我们认为,最近在石墨烯双层和三层中观察到的自旋和谷极化的金属相支持手性边缘模式,这些模式允许自旋波沿着系统边界沿弹道传播而不反向散射。手性边缘行为源于狄拉克带中动量空间浆果曲率与位置空间中自旋纹理的几何相之间的相互作用。边缘模式薄弱地局限于边缘,具有对边缘磁化的详细概况的色散。这种独特的边缘模式特征减少了它们与边缘障碍的重叠,并增强了模式的寿命。模式传播方向在逆转山谷极化后会逆转,这种效果可在等异种偏振的迪拉克频段中明确可测试的几何相互作用。
所研究的 LCLC 是色甘酸二钠 (DSCG) 的水溶液,这种材料的商品名为“色甘酸”或“色甘酸钠”,是预防过敏和哮喘相关症状的药物中的活性成分。2 在水中,DSCG 分子面对面堆叠,使其疏水核心免受极性环境的影响。这种自组装产生细长的圆柱形聚集体,直径约 2 纳米,堆叠距离为 0.34 纳米,这使它们类似于双链 DNA (dsDNA)。然而,dsDNA 是手性的,而 DSCG 分子不是,并且没有沿聚集体轴的持续扭曲。这种分子尺度的差异在宏观层面上表现出色。在水溶液中,dsDNA 分子相对于彼此扭曲,形成所谓的胆甾型液晶,其宏观螺距在微米级。分子手性和宏观手性之间微妙的关系仍是当前研究的课题。3 相反,水中的非手性 DSCG 聚集体彼此平行排列,形成具有优选方向 n ̂ 的镜像对称向列液晶,该方向称为指向矢。手性分子的手性堆积随处可见,而非手性分子的手性堆积却很少见。非手性分子形成的液晶的宏观镜像对称性破缺需要特殊的空间限制。Charles-Victor Mauguin 在巴黎参加了 Pierre Curie 关于物理效应对称性的讲座后,萌生了探索晶体学和液晶的想法,并
我们基于手性铁电列相(n f ∗)提出了液晶激光器装置。激光培养基是通过将铁电列材料与手性剂和一小部分荧光染料混合而获得的。值得注意的是,在N f ∗相中,非常低的电场垂直于螺旋轴能够重新定位分子,从而产生了一个周期性结构,其导演不是单个谐波,但包含各种傅立叶成分的贡献。此功能诱导了几个光子带盖的外观,这些光子带镜的光谱范围取决于磁场,可以利用该磁场来构建可调激光设备。在这里,我们报告了可以在低电场下进行调谐的自制n f ∗激光器的表征,并在材料的两个光子带中呈现激光作用。获得的结果为设计新的和更通用的液晶激光器设计开辟了有希望的途径。
1个创新与科学系,法国安东尼的Stallergenes Greer | 2服务de pneumologie et CenterdeRéférencepour les les radies Respratoires Rares,HôpitalBichat,Ap-HP-HP-Nord-NordsitéParisitéParisitéParisé,法国巴黎,法国| 3 Crisalis F-Crin Network,法国巴黎,法国| 4图卢兹感染和炎症性疾病研究所(Infinity),Inserm umr1291,CNRS UMR5051,图卢兹大学,图卢兹III,图卢兹,法国,法国| 5法国图卢兹医学院图卢兹大学医院呼吸医学系| 6 Crisalis/fcrin,法国图卢兹| 7波兰卡托维奇的西里西亚医科大学内部疾病,皮肤病学和过敏症临床系| 8德国马尔堡市马尔堡大学医院马尔堡大学医院马尔堡大学医院马尔堡大学医院的口和颈外科手术系Otorhinolaryngology系| 9个个性化医学,哮喘和过敏,意大利米兰的Humanitas临床和研究中心IRCC | 10意大利米兰人类大学生物医学科学系| 11瑞士过敏和哮喘研究所,瑞士达沃斯苏黎世大学| 12国家心脏和肺部研究所,英国伦敦帝国学院| 13英国伦敦的NIHR帝国生物医学研究中心
我们基于手性铁电列相(n f ∗)提出了液晶激光器装置。激光培养基是通过将铁电列材料与手性剂和一小部分荧光染料混合而获得的。值得注意的是,在N f ∗相中,非常低的电场垂直于螺旋轴能够重新定位分子,从而产生了一个周期性结构,其导演不是单个谐波,但包含各种傅立叶成分的贡献。此功能诱导了几个光子带盖的外观,这些光子带镜的光谱范围取决于磁场,可以利用该磁场来构建可调激光设备。在这里,我们报告了可以在低电场下进行调谐的自制n f ∗激光器的表征,并在材料的两个光子带中呈现激光作用。获得的结果为设计新的和更通用的液晶激光器设计开辟了有希望的途径。
磁性 skyrmion 是具有类粒子特性的拓扑非平凡自旋配置。早期研究主要集中于拓扑电荷 Q = − 1 的特定类型的 skyrmion。然而,二维手性磁体的理论分析已经预测了 skyrmion 袋的存在——具有任意正或负拓扑电荷的孤子。虽然这种自旋结构是亚稳态,但最近的实验观察证实了孤立 skyrmion 袋在有限范围的施加磁场中的稳定性。这里利用 Lorentz 透射电子显微镜展示了 B20 型 FeGe 薄板中 skyrmion 袋的非凡稳定性。特别是,结果表明,嵌入 skyrmion 晶格中的 skyrmion 袋即使在零或反转的外部磁场中也能保持稳定。提供了一种用于成核此类嵌入式 skyrmion 袋的强大协议。结果与微磁模拟完全吻合,并建立了立方手性磁体薄板作为探索宽谱拓扑磁孤子的有力平台。
|⟨ j | e − iH ′ t | k⟩| 2 = |⟨j| U † e − iHt U | k⟩| 2 = | ei(φj−φk)⟨j| e − iHt | k⟩| 2 = ⟨ j | e − iHt | k⟩| 2。 (3)
在各种物理系统中利用幂律相互作用 (1 / r α ) 的做法正在日益增多。我们研究手性自旋链的动力学作为一种可能的多向量子通道。这源于具有复杂量子干涉效应的色散的非线性特性。利用互补的数值和分析技术,我们提出了一个模型来引导量子态向所需的方向发展。我们使用受 Dzyaloshinskii-Moriya (DM) 相互作用调制的长程 XXZ 模型来说明我们的方法。通过探索局部量子猝灭后的非平衡动力学,我们确定了相互作用范围 α 和 Dzyaloshinskii-Moriya 耦合的相互作用,从而导致了明显的非对称自旋激发传输。这对于量子信息协议传输量子态可能很有趣,而且可以通过当前的离子阱实验进行测试。我们进一步探索了这些系统中块纠缠熵的增长,发现数量级的减少。
在手性阳离子催化中,催化剂与阴离子中间体配对,通常是由无机碱基的反应物质子抽象引起的它形成的。例如,诸如烷基化,迈克尔添加,藻反应和曼尼奇反应等反应已经融合了中间体,并且可以使用手性阳离子相转移的细胞来促进中间体。1 B其他阴离子(例如氰化物和uoride)也可以使用这种方法分别激活以进行氰化和uorination。然而,涉及中性电子状态的反应物或对无机碱基的反应物不能使用手性阳离子催化剂进行催化。因此,为了扩大手性阳离子催化的范围,人们热切期望制定避免这种弱点的策略。为了激活与甘氨酸schi b碱添加的烯丙基醋酸盐,锣3 a和takemoto 3 b,c在
我们从理论上研究了手性波导中光子的少体和多体动力学。特别是,我们研究了脉冲通过手性耦合到波导的 N 个两级系统集合的传播。我们表明,该系统支持相关多光子束缚态,这些束缚态具有明确定义的光子数 n,并以 1 =n 2 的群延迟比例在系统中传播。这产生了一个有趣的结果,即在传播过程中,入射相干态脉冲会分解为不同的束缚态分量,这些分量可以在足够长的系统中在输出端空间分离。对于足够多的光子和足够短的系统,我们表明 n 体束缚态的线性组合恢复了自诱导透明中众所周知的平均场孤子现象。因此,我们的工作涵盖了从少光子量子传播到真正的量子多体(原子和光子)现象以及最终的量子到经典跃迁的整个范围。最后,我们证明束缚态可以与额外的光子发生弹性散射。总之,我们的结果表明,光子束缚态是真正独特的物理对象,它来自光子和两级发射器之间最基本的光物质相互作用。我们的工作为在手性波导 QED 中研究量子多体物理和光子孤子物理打开了大门。