摘要 - 尽管垃圾箱是机器人操纵的关键基准任务,但社区主要集中于将刚性直线物体放置在容器中。我们通过呈现一只软机器人手,结合视力,基于运动的本体感受和软触觉传感器来识别,排序和包装未知物体的流。这种多模式传感方法使我们的软机器人操纵器能够估计物体的大小和刚度,从而使我们能够将“包装好容器”的不定定义的人类概念转化为可实现的指标。我们通过逼真的杂货包装场景证明了这种软机器人系统的有效性,其中任意形状,大小和刚度的物体向下移动传送带,必须智能地放置以避免粉碎精致的物体。将触觉和本体感受反馈与外部视力结合起来,与无传感器基线(少9倍)和仅视觉的基线相比,项目受损的填料操作显着降低(4。少5×)技术,成功地证明了软机器人系统中多种感应方式的整合如何解决复杂的操作应用。
通过视觉引导手部动作进行的计算机交互通常采用抽象的基于光标的反馈或不同程度真实感的虚拟手 (VH) 表示。目前尚不清楚在虚拟现实环境中更改这种视觉反馈的效果。在这项研究中,19 名健康的右撇子成年人使用四种不同类型的视觉反馈执行食指运动(“动作”)和观察运动(“观察”):简单的圆形光标 (CU)、指示手指关节位置的点光 (PL) 图案、阴影卡通手 (SH) 和逼真的 VH。使用数据手套记录手指运动,并以光学方式记录眼动追踪。我们使用功能性磁共振成像 (fMRI) 测量大脑活动。与基线相比,动作和观察条件均显示枕颞皮质中的 fMRI 信号响应更强。动作条件还会引起运动、体感、顶叶和小脑区域的双侧激活增加。对于这两种情况,带有移动手指的手部反馈(SH、VH)比 CU 或 PL 反馈导致更高的激活,特别是在早期视觉区域和枕颞皮质中。我们的结果表明,与视觉不完整的手部和抽象反馈相比,在视觉引导的手指运动过程中,皮质区域网络的募集更强。这些信息可能对研究和应用或训练相关范例中涉及人体部位的视觉引导任务的设计产生影响。
1。斯坦福大学神经外科系2。Neurosurgery系,德克萨斯大学奥斯汀,奥斯汀,德克萨斯州奥斯汀 +这项工作主要在斯坦福大学进行。 3。 美国加利福尼亚州斯坦福大学斯坦福大学的霍华德·休斯医学院4. VA RR&D神经园艺与神经技术中心,康复研发服务,普罗维登斯VA医疗中心,美国RI,美国RI 5。 工程学院,布朗大学,美国普罗维登斯,美国,美国6。 Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Neurosurgery系,德克萨斯大学奥斯汀,奥斯汀,德克萨斯州奥斯汀 +这项工作主要在斯坦福大学进行。3。美国加利福尼亚州斯坦福大学斯坦福大学的霍华德·休斯医学院4.VA RR&D神经园艺与神经技术中心,康复研发服务,普罗维登斯VA医疗中心,美国RI,美国RI 5。工程学院,布朗大学,美国普罗维登斯,美国,美国6。 Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学工程学院,布朗大学,美国普罗维登斯,美国,美国6。Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。 马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。 Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Robert J.和Nancy D. Carney脑科学研究所,布朗大学,普罗维登斯,RI,美国7。马萨诸塞州波士顿,马萨诸塞州马萨诸塞州马萨诸塞州医学院神经科学和神经记录中心,美国马萨诸塞州,美国马萨诸塞州8。Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。 Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学Wu Tsai神经科学学院,斯坦福大学,加利福尼亚州斯坦福大学,美国9。Bio-X研究所,斯坦福大学,美国加利福尼亚州斯坦福大学
摘要 - 在此简介中,我们提出了一种逐步策略,以准确估计基于硅的多纤维双极晶体管结构中的纤维温度,从常规的调查中。首先,我们在给定的环境温度下提取几乎零动力的自加热电阻(r TH,II(t a))和热耦合因子(C IJ(t a))。现在,通过将叠加原理应用于几乎零功率的这些变量上,其中保留了热扩散方程的线性,我们估计有效的热电阻(r th,i(t a))和相应的修订后的效率温度t i(t a)。最后,Kirchhoff在T I(t a)上的trans形得出每个纤维处的真实温度(t i(t a,p d))。所提出的提取技术自动包括晶体管结构中存在的后端金属层和不同类型的沟渠的影响。该技术是针对具有不同发射极尺寸的双极晶体管的3D TCAD模拟结果验证的,然后应用于从stmicroelectronics B5T技术中从最先进的多纤维sige HBT获得的实际测量数据。可以观察到,原始测量数据在40 mW左右的叠加量低估了真正的纤维温度约10%。
本文介绍了一种生物启发的气动软执行器,旨在模仿人手指的柔韧性运动运动,特别关注通过颗粒状干扰来调节刚度。三腔几何形状 - 蜂窝,矩形和中途 - 以优化曲率性能,利用霉菌星15慢速弹性体进行执行器制造。使用Chia和藜麦晶粒在不可扩展的层中实现了颗粒状干扰,以增强刚度调制。实验结果表明,蜂窝几何形状与天然食指轨迹最紧密地对齐。刚度评估Quinoa的范围为0 - 0.47 N/mm/°,CHIA的范围为0 - 0.9 N/mm/°。与非裁定配置相比,藜麦的执行力量的产量增加了16%,CHIA的力量增加了71%。这种增强的性能对于诸如手部康复等应用特别有益,在这种应用中,自适应刚度和力调节至关重要。颗粒状干扰,尤其是使用Active Chia,为需要可变的刚度和电阻的任务提供了卓越的适应性,使其成为可穿戴机器人应用康复的有前途的候选人。
根据世界卫生组织的说法,到2019年,全世界约有5500万人患有痴呆症,预计到2050年,这一数字预计将增加到1.39亿(阿尔茨海默氏病,国际,2023年)。在老年人的认知功能和手部敏捷之间发现了一种关系,揭示了手机敲击运动中的表现会随着认知功能的减少而下降(Suzumura等人,2016,2021)。此外,事实证明,手机攻击性能可用于评估轻度认知障碍的风险(MCI)(Suzumura等,2022)。训练手敏捷不仅可以提高敏捷性和执行功能,而且还可能对认知功能具有长期的好处(Seol等,2023)。这些发现表明,开发有效的方法来改善手动敏捷对于防止老年人的认知能力下降和痴呆症至关重要。
手指滑翔练习被认为可以增强屈肌肌腱偏移。这项研究评估了接受类固醇注射以触发手指后,手指滑翔锻炼的有效性。随机分配接受皮质类固醇注射的触发手指的患者(1:1)以对照和干预组。干预小组必须进行手指练习并定期提交在线练习日志。在24周内触发手指的临床结果,并通过在线调查评估了对手指滑翔练习的符合性。总共分配了38名参与者。基线特征相似,除了干预组的症状持续时间更长(5.2±2.9 vs. 3.6±2.6个月,p = 0.002)。在24周,34(89.5%)和33(86.8%)干预小组参与者对在线调查做出了回应。在数值疼痛评分,Quinelle分级,手指改善率,触发触发的复发,重复注射的需求以及新触发手指位点的发生中没有观察到统计学上的显着差异。运动对数响应率和合规率为85.6%和68.6%。总而言之,与常规护理相比,我们的研究没有建立手指滑翔运动的临床有效性。
摘要 关于运动技能习得背后的皮质改变仍存在争议。在这项针对年轻人的纵向研究中,我们在 6 周内每周进行一次表现和神经影像学 (7 T MRI) 测量,以研究与学习用非惯用手同时按压手指的序列相关的神经变化。干预组 (n = 33)(在家练习手指序列)和对照组 (n = 30,未在家练习)均表现出总体表现改善,但是干预组进行强化训练的序列表现改善更多,且与未进行强化训练的序列相比更一致。与未进行训练的序列相比,双侧顶叶和运动前皮质的大脑活动对于训练过的序列有所减少。未检测到与训练相关的主要感觉运动区域的变化。训练过和未训练序列之间的激活模式相似性在次要感觉运动区域降低,但在主要感觉运动区域没有降低,而不同训练过序列之间的激活模式相似性没有显示出可靠的变化。无论是试验中激活模式的变异性,还是大脑结构的估计值,都没有显示出与练习相关的、达到统计显著性的变化。总体而言,学习配置序列的主要相关性是次级运动区域大脑活动的减少。
摘要:最近,个体生物特征引起了很多关注,并且是建立多种安全性和真实性系统的核心,例如监视,法医,欺诈性披露和基于身份的访问控制。广泛的生物识别性特征使选择合适的问题是至关重要的问题,这主要取决于应用程序的类型,样本的可用性,复杂性的程度和可能性的可接受价值。机器学习算法的概念对最后的方式产生了极大的兴趣,尤其是它被称为深度学习神经网络的进化版本。机器学习已在许多生物识别系统中使用和实施,因为其强大的属性和功能可以为系统提供所需的目标,具有出色的性能。这项工作旨在对过去七年来的190多种有前途的作品进行广泛的调查,描述了基于多种基于生物特征的深度学习系统,这些深度学习系统基于四个流行和大多数使用的特征,包括面部,指纹,Iris和Finger Finger静脉。本文还介绍了两种生物识别技术的简要回顾和深度学习神经网络。
摘要 — 侵入式皮质脑机接口 (BMI) 可以显著改善运动障碍患者的生活质量。尽管如此,外部安装的基座存在感染风险,因此需要完全植入的系统。然而,这样的系统必须满足严格的延迟和能量限制,同时提供可靠的解码性能。虽然循环脉冲神经网络 (RSNN) 非常适合在神经形态硬件上进行超低功耗、低延迟处理,但它们是否满足上述要求尚不清楚。为了解决这个问题,我们训练了 RSNN 来解码两只猕猴的皮质脉冲序列 (CST) 中的手指速度。首先,我们发现大型 RSNN 模型在解码精度方面优于现有的前馈脉冲神经网络 (SNN) 和人工神经网络 (ANN)。接下来,我们开发了一个微型 RSNN,它具有较小的内存占用、较低的发放率和稀疏连接。尽管计算要求降低了,但生成的模型的性能明显优于现有的 SNN 和 ANN 解码器。因此,我们的结果表明,RSNN 在资源受限的情况下提供了具有竞争力的 CST 解码性能,并且是完全植入式超低功耗 BMI 的有希望的候选者,具有彻底改变患者护理的潜力。索引术语 — 脉冲神经网络、脑机接口、皮质脉冲序列解码、神经形态硬件