引用本文: 刘胜南, 付强, 冯楠, 张春华, 贺威.面向扑翼飞行机器人的电子稳像算法设计[J].北科大:工程科学学报 , 2024, 46(9): 1544- 1553. doi: 10.13374/j.issn2095-9389.2023.10.06.001 LIU Shengnan, FU Qiang, FENG Nan, ZHANG Chunhua, HE Wei.Design of an electronic image stabilization algorithm for flapping-wing flying robots[J].Chinese Journal of Engineering , 2024, 46(9): 1544-1553. doi: 10.13374/j.issn2095- 9389.2023.10.06.001
1.引言 有翅膀的鸟类和昆虫天生就具有良好的飞行性能[1-4] 。飞行器类型有固定翼、旋翼和扑翼。与固定翼和旋翼机飞行相比,仿生扑翼飞机具有独特的优势,如能原地或狭小场地停留、操纵性优异、悬停飞行性能好、飞行成本低等。飞机兼具升力、悬停、推动功能,扑翼系统[5] 。小型扑翼机器人因便携性、操作性、灵活性、隐蔽性好、制造成本低等特点,在军事和民用领域有着广泛的应用前景[6-7] 。正是由于其在各个领域具有很大的适用性,许多国家都将其视为重点研究对象[8] 。由加州理工学院和AeroVironment公司联合研制的Microbat是最早的电动微型扑翼飞机[9] 。第四架原型机的巡航时间为 22 分 45 秒。Microbat 的翼展只有 23 厘米,重量只有 14 克,扑翼频率约为 20Hz,可以携带一个微型相机。Mentor 由多伦多大学和斯坦福研究中心 (SRI) 合作生产,最大翼展为 15 厘米,重量为 50 克。它有四个机翼。机翼由电致伸缩聚合物人工肌肉 (EPAM) [9] 提供动力。德国公司 Festo 开发了仿生飞狐 [10] ,总质量为 580 克
我们作为社区大学受托人必须练习和证明的领导类型与生成AI基于聊天的界面一样复杂:基于获得的知识和高级推理能力的结合,输出背后是无数计算。人工智能现在是如此无所不在,如此令人生畏,以至于理解我们值得我们反思智力本身的本质是值得的。智能是“学习,理解或处理新的或尝试的情况的能力”,“熟练使用理性”或“应用知识来操纵环境或通过客观标准(例如测试)衡量的知识的能力”,根据Merriam-Webster Dictionary的说法。除了定义,智力的概念是一个复杂的概念 - 当我们努力以智能管理我们的大学时,要牢记的事情。任何新手董事会服务的人都知道,一个人的学习和理解能力都会受到无数因素的测试 - 大学系统的动态,议会程序的动态,存在的政策以及制定政策的制定,甚至是基本角色,责任,责任以及董事会首席执行官的局限性。处理新的和尝试的情况?董事会服务在这方面永远不会挑战我们。我们获得并组装所有这些知识后,我们必须熟练,明智地运用我们的理由。我们必须能够评估,例如,政策和领导决定的合理政策和领导决定程度,多少
CUT&RUN 方法 CUT&RUN 使用 CUTANA™ChIC/CUT&RUN 试剂盒进行,起始于 500k K562 细胞,含 0.5 µg IgG(EpiCypher 13-0042)、H3K4me3(EpiCypher 13-0060)、H3K27me3(EpiCypher 13-0055)或 0.125 µg CTCF(EpiCypher 13-2014)抗体,一式两份。使用 CUTANA™CUT&RUN 文库制备试剂盒(EpiCypher 14-1001/14-1002)以 5 ng DNA(或回收总量,如果少于 5 ng)进行文库制备。文库在 Illumina NextSeq2000 上运行,采用双端测序(2x50 bp)。样本测序深度为 5.5/18.8 百万个读数 (IgG Rep 1/Rep 2)、14.2/17.0 百万个读数 (H3K4me3 Rep 1/Rep 2)、24.7/18.1 百万个读数 (H3K27me3 Rep 1/Rep 2) 和 8.6/5.5 百万个读数 (CTCF Rep 1/Rep 2)。使用 Bowtie2 将数据与 T2T-CHM13v2.0 基因组比对。过滤数据以删除重复、多比对读数和 ENCODE DAC 排除列表区域。
WP06 Effective Manual Operations Cur Fut Reg.i TRL Validation 6-A Manual screening of cargo fire hazards and effective fire patrols C F R 6-7 Onboard/Terminal 6-B Quick manual fire confirmation and localization C F 6-7 Onboard 6-C Efficient first response C 6 Onboard 6-D Effective and efficient manual firefighting C F 6 Onboard/Field WP07 Inherently Safe Design Cur Fut Reg.i TRL Validation 7-A Improved fire detection system interface design C R 5-6 Onboard/Virtual 7-B Efficient extinguishing system activation and inherently safe design C R 6 Onboard 7-C Firefighting resource management centre C F 6 Onboard/Virtual WP08 Ignition Prevention Cur Fut Reg.i TRL Validation 8-A Automatic screening and management of cargo fire hazards C F 5 Onboard/Shore 8-B Guidelines and solutions for safe electrical connections C F R 6-7新型RO-RO空间材料的板载8-C火灾要求C F R 6-7实验室WP09检测cur fut fut fut。 10-B Weather deck fixed fire-extinguishing systems C R 6 Onboard 10-C Updated performance of alternative fixed fire-fighting systems C R 6 Lab WP11 Containment Cur Fut Reg.i TRL Validation 11-A Division of ro-ro spaces C 5 Lab/Onboard 11-B Ensuring safe evacuation C R 6 Virtual/Shipyard 11-C Safe design with ro-ro space openings C R 6 Virtual/Lab 11-D Ro-ro space ventilation and smoke extraction C R 5-6实验室/板上
研究领域 ▪ 飞行动力学与控制、系统 ID、时间周期系统 ❑ 旋翼机(直升机、eVTOL、UAS) ❑ 扑翼飞行(昆虫/鸟类、扑翼 MAV) ❑ 固定翼飞机(扑尾概念飞机)