nasa.gov › 中心 › dryden › pdf PDF 作者:JW Pahle · 1990 — 作者:JW Pahle · 1990 数字电传操纵 (DFBW) 飞机,采用复合机翼和机翼枢轴机构取代现有的……信号可靠性和。30 页
摘要 本文旨在设计和研究无人驾驶飞行器 (UAV) 六旋翼飞行器在三维空间中的动态模型。基于牛顿-欧拉法确定了导出的运动方程。这些方程具有非线性和耦合性。此外,为了使六旋翼飞行器具有真实的运动,模型中还嵌入了气动效应和扰动。六旋翼飞行器是一种垂直起降 (VTOL) 飞行器,具有悬停能力和灵活性,因此与固定翼飞行器相比毫不逊色。尽管如此,它的动态模型很复杂,被描述为不稳定的,并且不能在不扭转其轴的情况下进行平移运动。除了控制和仿真设计模块外,还通过 LabVIEW 软件建立了结论性数学模型。因此,对多个实验状态的稳定性进行了分析,以便提前展示用于平衡和轨迹跟踪的适当控制器。关键词:——无人机,六旋翼飞行器动力学,非线性控制,耦合和欠驱动模型,牛顿-欧拉方法。
我要感谢我的导师:Markus Wilde 博士、Tiauw Go 博士和 James Brenner 博士,感谢他们在我在佛罗里达理工学院的整个学术生涯中给予我的耐心、指导和支持。如果没有他们的专业知识,这篇论文就不可能完成。我要特别感谢 Wilde 博士,他从大三设计到大四设计一直指导这个项目,并将其变成一个论文项目。这个项目给了我一个成长为工程师的绝佳机会。我还要感谢我的矩阵主管 Jose Nunez 博士,他给了我一个新毕业的工程专业学生机会,并给了我在 NASA KSC 工作的机会。特别感谢我的 NASA 导师:Mike DuPuis 和 Michael Johansen,感谢他们的耐心以及他们在建模和控制方面的丰富知识。当然,我要向 NASA KSC 飞行技术部门的所有人表示感谢。最后,我要感谢我的朋友 James (Jimmy) Byrnes、Andrew Czap、Juliette Bido 和 Charles (Joe) Berry 在本论文的整个过程中给予的支持和投入。我很自豪地说,我和他们是同班同学。
nasa.gov › centers › dryden › pdf PDF 作者:JW Pahle · 1990 — 作者:JW Pahle · 1990 数字电传操纵(DFBW)飞机采用复合机翼和机翼枢轴机构取代现有的……信号可靠性和。 30 页
本文旨在介绍在清洁航空翼项目中完成的LH 2功率支撑式干翼配置(SBDW),以进行小型中等范围任务(239 PAX,2500 nm)。在此框架中,Onera,Delft技术大学和Stuttgart大学正在建立一个常见的多学科设计过程,以探索这种配置提供的设计空间,在该配置中,机翼不再具有携带燃料的功能,因为低温LH 2 -Tanks位于熔融的后部。本文首先介绍了多学科和多保真设计过程,并详细描述了所有学科模块及其在快速OAD OAD OAD ONERA总体飞机设计(OAD)过程中的集成。第二部分重点是对结果的分析,深入研究了最佳概念的性能。
通过了解控制动力学并可能利用特定现象,可以在设计的最初阶段增强空气动力学系统(例如航空航天器、船舶、潜艇、离岸结构和风力涡轮机)的性能。控制这些系统空气动力学性能的方程可能包括非线性偏微分方程(例如 Navier-Stokes 方程)。计算机硬件和软件的最新进展使得数值模拟成为可能,其中上述方程被离散化并与稳健的数值算法相结合。虽然这些高保真方法在捕捉主要物理特征方面非常有效,但它们涉及以复杂方式相互关联的多种现象,必须以大量自由度来解决。此外,使用这些工具所需的大量计算资源和时间可能会限制模拟大量配置以用于设计目的的能力。这些缺点导致需要开发简化的模拟工具,以降低计算成本,同时体现相关的物理方面和响应特性。在本文中,我们提出了一种基于非稳定涡格法 (UVLM) 的势流求解器(即 PyFly)的快速高效实现。该计算工具可用于模拟运动和变形物体(如拍打的机翼、旋转的叶片、悬索桥面和游动的鱼)的非稳定气动行为。UVLM 计算由加速度和环流现象导致的物体表面压力差异所产生的力。这解释了非稳定效应,例如增加的质量力、束缚环流的增长和尾流。UVLM 仅适用于理想流体、不可压缩、无粘性和无旋流,其中分离线是先验已知的。因此,UVLM 的公式要求流体在后缘平稳离开机翼(通过施加库塔条件),并且不涵盖前缘流动分离的情况和发生强烈机翼尾流相互作用的极端情况。尽管存在所有这些限制,研究工作仍考虑使用 UVLM 设计前向和悬停飞行中的类似鸟类的扑翼 [2、3、4、5]、风力涡轮机建模 [6] 以及土木工程结构的控制和振动抑制 [7、8]。虽然快速运行时间通常是科学软件项目的目标,但我们认识到简单的用户界面也是框架使用的一个重要方面。一个理解和使用起来很复杂的高效框架不会减少工程师的解决问题的时间,尽管生成的代码执行速度很快。但是,易于使用的语言的性能通常会慢几个数量级。这两种情况都不理想。PyFly 的目标是提供一个基于 UVLM 的友好气动模拟框架,该框架在计算上也是高效的。我们通过使用混合语言编程来实现这一点。我们使用 Python [9] 进行网格对象的高级管理,使用 Fortran 作为必须高效运行的计算内核。虽然数值方法不会因不同的应用程序而改变,但不同应用程序提出的要求可能会变得复杂难以管理。例如,在扑翼的情况下,需要管理机翼及其尾流。对于对称飞行,我们还必须跟踪机翼镜像的影响。然而,在
目前最先进的无人机着陆系统依赖于对着陆目标车辆上放置的视觉路标的检测。然而,在光线不足、遮挡或极端运动等具有挑战性的条件下,这些路标可能在相当长的时间内都检测不到。本论文展示了一种状态估计算法,该算法跟踪和估计目标车辆上未知视觉特征的位置。实验结果表明,该方法在未检测到路标的情况下显著提高了对目标车辆状态的估计。
伊丽莎白女王号航空母舰是英国皇家海军两艘新一代航空母舰中的第一艘。伊丽莎白女王级航空母舰的主要作用是提供固定翼航母打击能力,其次要作用是使用全系列英国前线旋翼机支持两栖作战。为了推导支持这种能力的舰载直升机操作极限 (SHOL),空中测试和评估中心 (ATEC) 采用了实用的首航飞行试验 (FOCFT) 和分析方法。虽然本文概述了 SHOL 推导过程,但重点关注 FOCFT 的实施,由于舰船的大小和复杂性以及舰船计划的有限时间,FOCFT 带来了重大挑战,需要新的解决方案。Chinook HC Mk 5 和 Merlin HM Mk 2 被选为试验飞机,因为它们都与两栖攻击角色高度相关,并且之前曾用于支持对其他英国类型的分析许可。通常在 SHOL 测试期间,可能会花费大量时间来定位船舶以获得理想的测试气象条件,并进行机动以产生特定的相对风。此外,测试飞机可能会花费一半以上的时间在航线上。只要有可能,就会同时进行一架 Merlin 和一架 Chinook 的试飞,以最大限度地发挥每种大气和相对风条件的输出,每架飞机都在一个航线和进近中进行多次着陆。协调和排序飞机和测试条件是一项重大挑战,特别是在达到极限条件时。开发并实施了自动分析技术,以便快速评估每架飞机和操作点的着陆数据,为飞行之间的测试计划提供信息。在短短两周内,总共进行了 987 次登陆演习,包括在海况 5 级的条件下,在白天和夜间对 Merlin 和 Chinook 的最大总重量进行操作。然后利用分析方法根据 FOCFT 数据为 Apache 和 Wildcat 提供许可,并为非航空母舰 (HOSTACS) 的直升机操作提供建议。
1纳米科学学院,UMR CNRS 7588,法国索邦大学2 EsycomUniversité(UMR 9007),Univ Gustave Eiffel,CNR,F-77454,F-77454 Marne-la-valléecedex 2,France 3 Universite,Frive Infferity thr Fircation:complate cropplation intrance:conflance:conflass in University cropcess:形态蝴蝶的蓝翼尺度的正交轴,而以前的大多数研究都模拟了比例结构,仅考虑一个或两个光子晶体尺寸。此外,这些尺度的先前的光学研究集中在翼反射的光上,而我们研究沿着薄片的光传播,该方向与光子晶体结构的第三维相对应。使用有限元方法获得的仿真结果与测量和/或文献进行了比较。这些计算是针对不同尺度模型和方向执行的,表明非反过来的光(基本上是红色和红外)的很大一部分由层层引导到尺度的底部,在那里可以更容易地吸收它,并且热量更快地转移到了血液中。这种新现象可能有助于昆虫的热平衡,并进一步说明了鳞翅目翅膀的多功能性。
利用复合材料减少船上设备的振动传输 ⇒ ①② 利用信号处理减少声纳罩内的噪声 ⇒ ② 利用自适应机翼减少螺旋桨的辐射噪声 ⇒ ①② 通过优化船头形状减少破浪 ⇒ ②