摘要:进行实验,以获取有关模板打印转移效率的数据,并培训了基于机器学习的技术(人工神经网络)来预测该参数。实验中的输入参数空间包括五个不同级别的打印速度(在20至1120 mm/s之间)以及从0.34到1.69的模板孔的面积比。还研究了三种类型的无铅焊料糊,如下:3型(粒径范围为20-45 µm),4型4(20–38 µm),型5(10-25 µm)。输出参数空间包括打印沉积物的高度和面积以及相应的转移效率,这是沉积物粘贴体积与光圈体积的比率。最后,使用Levenberg -Marquardt培训算法对人工神经网络进行了经验数据。发现网络大小微调的最佳调整因子约为9,导致隐藏的神经元数为160。训练有素的网络能够以平均平均百分比误差(MAPE)低于3%的平均百分比误差(MAPE)来预测输出参数。但是,预测错误取决于输入参数的值,该值在本文中详细列出了。研究证明了机器学习技术在模具印刷过程的产量预测中的适用性。
电视、电脑和智能手机的显示器在画质、清晰度和能效方面不断改进。激光显示器有望成为下一代显示器。特别是在亮度和色彩再现性方面,激光显示器有可能克服传统发光设备(如 OLED 和液晶)的固有局限性。
现代人类社会高度依赖塑料材料,但是,其中大部分是不可再生的商品塑料,这些塑料会引起污染问题,并为其热处理活动消耗大量能量。在本文中,可持续的纤维素水理材料及其复合材料可以反复地形成使用仅使用水的各种2D/3D几何形状。在潮湿状态下,它们的高灵活性和延展性使其有利于进行塑造。在环境环境中,尽管厚度为数百微米,但湿的水质将其自发转移到刚性材料中,其预期形状在<30分钟内。它们也具有抗湿度,并且在高度潮湿的环境中在结构上保持稳定。鉴于其出色的机械性能,几何可重编程性,基于生物的和可生物降解的性质,纤维素的水质构成是传统塑料材料甚至“绿色”热塑性的可持续替代品。本文还证明了3D打印这些水型的可能性以及将它们用于电子应用中的潜力。所证明的可供应的结构电子组件显示出在执行电子功能,负载能力和几何学多功能性方面的能力,这些功能是轻质,可自定义和几何形状唯一电子设备的吸引人功能。
在图1A中提供了经典的电化学实验设置,我们可以观察到,在感兴趣的解决方案中,我们可以观察到商业上可用的固体玻璃碳的工作(直径为3 mm,我们),计数器(CE)和参考(RE)电极。这是电化学的支柱,产生有用的电化学和电分析结果。使用这些电极,可能需要通过电极清洁(电化学上)和/或在实验性测量之间进行电极清洁和/或抛光来补充工作电极的表面,这是由于物种或离子的吸附以及经验间测量过程中可能导致交叉歧义的记忆工作。围绕此方法的一种方法是使用屏幕打印的石墨电极,请参见图1B,这些电极已显示提供相同的电化学测量值,但具有以下益处:[1-15] 1.成本效益:与传统的固体电极相比,屏幕打印的电极相对便宜,因此由于其经济规模而使其用于研究和工业应用; 2。一次性:由于它们是廉价的屏幕打印电极,通常是一次性的,因此消除了清洁的需求,并降低了样品之间交叉污染的风险; 3。微型化和低体积:可以用在较小的整体区域工作的较小的电极制成屏幕打印的电极,从而可以使用屏幕打印的电极,在该电极中使用较小的样品体积允许设备小型化是一个优势。经典用途结合了微流体和
-----他揭示了深远的不平等,尤其是种族不平等,在跨社区之间产生了巨大的寿命和福祉差异,他提供了强大的患者轶事,这些轶事为其他抽象的挑战提供了人类的面孔。”哈罗德·波拉克(Harold Pollack),芝加哥大学
摘要:超出或推进器的产生的污染物对于光学表面和光学有效载荷至关重要,因为科学测量值,并且通常可以通过不受控制的污染来降解或危害性能。这是空间技术中的一个众所周知的问题,可以通过增长的石英晶体微量平衡来证明,作为测量材料超出质量性能数据并表征轨污染环境的解决方案。在太空中的操作需要与关键要求的兼容性,尤其是整个任务中要面对的机械和热环境。这项工作提供了基于3D打印技术的固定结构的设计,该技术旨在满足太空应用的环境特征,尤其是面对严酷的机械和热环境。已经构想了一种运动学安装,以赋予与较大温度范围的兼容性,并且它是通过有限的元素方法设计的,可以在发射阶段克服负载,并应对温度的工作范围降低到低温温度。质量,并允许对嵌入式加热器和传感器在该温度范围内的机械电阻和稳定性进行验证。此外,在随机环境中进行的机械测试以500 m/s 2的RMS加速度水平和20至2000 Hz的激发频率进行了成功。测试活动允许验证拟议的设计,并为可能的未来的飞机机会(以及船上的微型或纳米卫星)开辟了道路。此外,通过利用制造技术,拟议的设计可以实现容易的组装和安装固定系统。同时,即使是用于地面应用的小型系列生产,3D打印也提供了一种具有成本效益的解决方案,例如监测热毛库腔室中的污染物或清洁室或沉积室。
摘要 - 人的手指通过结合刚度不同的结构(从软组织(低)到肌腱和软骨(中)到骨骼(高),实现了异常的灵巧性和适应性。本文探讨了开发具有相似多态性特征的机器人手指。具体来说,我们建议使用通过体素大小和单位细胞几何形状参数的晶格配置,以优化并实现具有高粒度的精细调谐刚度。这种方法的一个重要优势是在单个过程中打印设计的可行性,消除了对刚度不同的元素的手动组装的需求。基于这种方法,我们提出了一种新颖的人类手指和一个软抓手。我们将后者与刚性操纵器集成在一起,并证明了挑选和放置任务的有效性。
以及备件库存短缺。该项目既是对 EOS IN738 的测试,也是 AM 在旋转涡轮机械部件中的首次已知使用测试。Precision ADM 医疗和工业销售及业务开发总监 Derek VanDenDreissche(B,SC)表示:“得益于 EOS 技术和 EOS IN738 材料,我们成功生产出涡轮发动机叶片,该叶片的转速达到标准运行转速的 110%,并可承受涡轮机产生的高达 1,700 华氏度的高温。这些测试不仅展示了有史以来第一个成功的 3D 打印涡轮发动机叶片,而且 EOS IN738 可以承受涡轮机械应用所需的高热量和应力。简而言之,EOS IN738 对该项目的成功至关重要。”EOS K500:经济高效、坚固且耐腐蚀
在过去的几十年中,使用三维(3D)印刷品的使用大大受益于患者特定的假肢,药物给药,组织和器官的制造以及手术计划的发展。由于美利坚合众国于2015年发起了精密医学计划,因此对定制医疗保健的热情增加了。简而言之,“个性化医学”一词是指针对患者量身定制的医疗服务。尽管如此,在3D打印中使用的生物医学材料通常是稳定的,在人体的内部环境中无法做出反应或自适应和聪明。以前的制造,其中包括在将其释放到目标表面之前在平坦的基材上打印,可能会导致印刷部分和目标区域之间的差异。3D打印是一种可用于提供自定义治疗的方法。在采用可以通过刺激进行调整的组件时,开发了四维(4D)打印。一些研究人员最近一直在研究一个将药物与3D和4D打印融合的新领域。4D打印的开发克服了许多此类问题,并为生物医学行业创造了一个有希望的未来。已预编程的智能材料可用于4D打印中,以创建与外部刺激相互作用的结构。尽管有这些好处,但使用4D技术创建的动态材料仍在其开发中。结果,出现了有关药品和配方的几种想法,这些想法可能被定制和印刷。此外,Spritam®是由3D打印生产的第一家药物,确实已经到达了医疗设施。本文提供了几种3D和4D打印技术的摘要,以及它们在制药行业中如何用于定制医学和药物输送系统。
解释不同类型的3D打印技术确定粉末结合和喷射过程的参数确定有效使用ABS材料3D打印应用数学原理来评估材料的数量。模块1:原型介绍,3D打印机的工作,3D打印机类型:EXP 1:工程组件的建模和STL格式的转换。exp 2:STL文件切片和过程参数的效果(如层厚度,方向和填充构建时间)使用软件的填充。练习1:组件1练习2:组件2模块2:EXP 1:3D通过不同的层厚度打印建模组件。EXP 2:3D通过不同方向打印建模组件。EXP 3:3D通过改变填充物来对建模组件进行打印。模块3:研究不同材料(例如ABS,PLA,树脂等)的影响和尺寸准确性。模块4:识别3D打印组件中的缺陷。模块5 EXP1:使用反向工程中未知维度的3D扫描仪对组件进行建模。EXP 2:3D打印上述建模组件。