摘要:增材制造 (AM) 工艺中的质量预测至关重要,特别是在航空航天、生物医学和汽车等高风险制造业。声学传感器已成为一种有价值的工具,可通过分析特征和提取独特特征来检测打印图案的变化。本研究重点关注熔融沉积成型 (FDM) 3D 打印样品立方体 (10 mm × 10 mm × 5 mm) 的声学数据流的收集、预处理和分析。以 10 秒为间隔提取不同层厚度的时域和频域特征。使用谐波-打击源分离 (HPSS) 方法对音频样本进行预处理,并使用 Librosa 模块对时间和频率特征进行分析。进行了特征重要性分析,并使用八种不同的分类器算法(K最近邻(KNN)、支持向量机(SVM)、高斯朴素贝叶斯(GNB)、决策树(DT)、逻辑回归(LR)、随机森林(RF)、极端梯度提升(XGB)和轻梯度提升机(LightGBM))实施机器学习(ML)预测,以基于标记数据集对打印质量进行分类。使用具有不同层厚度的三维打印样品(代表两种打印质量水平)生成音频样本。从这些音频样本中提取的频谱特征作为监督ML算法的输入变量,以预测打印质量。调查显示,频谱平坦度、频谱质心、功率谱密度和RMS能量的平均值是最关键的声学特征。使用包括准确度分数、F-1分数、召回率、精确度和ROC / AUC在内的预测指标来评估模型。极端梯度提升算法脱颖而出,成为最佳模型,预测准确率为 91.3%,准确率为 88.8%,召回率为 92.9%,F-1 得分为 90.8%,AUC 为 96.3%。这项研究为使用熔融沉积模型进行基于声学的 3D 打印部件质量预测和控制奠定了基础,并可扩展到其他增材制造技术。