公路部高速公路部长杰森·彼得斯(Jason Peters)在德国乡镇的山核桃路和菲尔伯特路之间的Precision Utilities Group提出了道路孔的要求,目的是向客户提供服务。Mike Burroughs由Kevin Overmyer搬到第二位,以批准位于德国乡镇Hickory Road和Filbert Road之间的Precision Utilities Group的道路填充要求,目的是为客户提供服务。运动以3-0进行。校长彼得斯提供了以下项目的最新信息:第87号桥梁:第11条道路:无更新。桥11,联合路:完成最后的步行,结果有一个很小的打孔清单。桥1,Ule Road(本地项目):租赁日期是2024年11月18日。与NIPSCO合作重新搬迁加油管线并完成最终的工作计划请求(FWPR)进行提交。桥232号,伦道夫街:无更新。 桥梁231,中心街,不来梅:(1)Indot提交并审查了历史桥梁替代报告(HBAR)。 INDOT文化资源办公室建议在批准之前进行咨询派对会议,以讨论HPBA。 (2)为了支持原始的HBAR,我们通过现有拱门与AES进行了核心,并制作了建筑材料的技术报告。 结果表明拱门是由石头构成的。 (3)INDOT要求我们使用我们的第106条亚征媒体来开发一份信函草案,其中包括迄今为止有关公共宣传的信件。 他们将使用这封信设置咨询方会议。桥232号,伦道夫街:无更新。桥梁231,中心街,不来梅:(1)Indot提交并审查了历史桥梁替代报告(HBAR)。INDOT文化资源办公室建议在批准之前进行咨询派对会议,以讨论HPBA。(2)为了支持原始的HBAR,我们通过现有拱门与AES进行了核心,并制作了建筑材料的技术报告。结果表明拱门是由石头构成的。(3)INDOT要求我们使用我们的第106条亚征媒体来开发一份信函草案,其中包括迄今为止有关公共宣传的信件。他们将使用这封信设置咨询方会议。(4)本信草案已提交给INDOT。我们希望咨询方会议将在下个月内安排。(5)最终的替代分析报告批准取决于咨询方会议和上述HBAR的最终批准。(6)公用事业和铁路协调正在进行中,但取得了重大进展取决于初步计划的制定。(7)HBAR批准后,初步计划的制定将增加。橄榄步道以东第12条道路88号桥梁:次要项目计划协议(MPPA)正在进行中,并计划在2024年8月30日之前提交。
■联盟理由打孔集团以其公司的目的为指导,以“通过制造业,技术和自由创造力来塑造下一代繁荣的未来,”以我们的全球网络为基础,我们已经建立了最新的,在广泛的领域中为制造业提供了广泛的领域。基于我们的高级精确加工技术,Punch Group建立了一个制造系统,该系统从头到尾都无缝覆盖整个制造过程。除了我们多样化的产品线(包括模具和模具零件,自动化设备和外围部件以及定制机器零件)外,Punch Group还提供3D测量的服务,并与航空航天行业一起参与了联合研究。我们不断采取新的挑战,并以细心和反应迅速的方法来应对广泛的客户需求。MOSUMI集团为工业自动化(IA)行业的客户提供“可靠,快速交付”和“减少客户浪费的工作和任务”,以创建自动化和劳动力节省的“时间价值”。在制造业务中,我们开发,制造和销售自动化设备,自动化设备零件,模具和模具零件以及与自动化相关的间接材料;在分销业务中,它处理了各种产品,从与自动化相关的间接材料到消耗品(MRO,维护维修和运营),包括其他公司的产品。通过各种渠道和高级数字技术,即目录,电子商务网站和“ Meviy”,利用这种独特的商业模式,正在加速业务扩展和全球开发。 作为平等合作伙伴,Punch Group和Misumi Group已签订了联盟协议,目的是不断共存和繁荣,从而为整个行业和社会的繁荣做出了贡献。 展望未来,两个小组都将充分利用各自的优势; Punch Group将借鉴其先进的精确加工技术和对客户需求的细心响应能力,而Misumi Group将利用其领先的数字技术和全球可靠,快速交付的供应链能力。 一起,我们将继续在各种金属加工中,从标准化到自定义零件,不仅限于自动化设备及其外围部件的领域,并在多种金属加工中相互补充,补充和增强,以及模具和模具组件。 ■Alliance概述((((Alliance))业务联盟概述Punch Industry Co.,Ltd。将通过Punch Group进行的第三方分配,分配该公司发行的3,000,000股普通股(占该公司已发行的股票总数的10.93%)。 MOSUMI Group打算继续持有公司的股份,我们已经确定要发行的股份数量,产生稀释的规模以及对市场的影响是合理的,可以实现这些目标。利用这种独特的商业模式,正在加速业务扩展和全球开发。作为平等合作伙伴,Punch Group和Misumi Group已签订了联盟协议,目的是不断共存和繁荣,从而为整个行业和社会的繁荣做出了贡献。展望未来,两个小组都将充分利用各自的优势; Punch Group将借鉴其先进的精确加工技术和对客户需求的细心响应能力,而Misumi Group将利用其领先的数字技术和全球可靠,快速交付的供应链能力。一起,我们将继续在各种金属加工中,从标准化到自定义零件,不仅限于自动化设备及其外围部件的领域,并在多种金属加工中相互补充,补充和增强,以及模具和模具组件。■Alliance概述((((Alliance))业务联盟概述Punch Industry Co.,Ltd。将通过Punch Group进行的第三方分配,分配该公司发行的3,000,000股普通股(占该公司已发行的股票总数的10.93%)。MOSUMI Group打算继续持有公司的股份,我们已经确定要发行的股份数量,产生稀释的规模以及对市场的影响是合理的,可以实现这些目标。Punch Group已从Misumi Group获得了一项书面承诺,即Misumi Group在付款日期的两年内将全部或部分新股份转让,将在第三方分配下发行,它将报告以书面形式向Punch Group报告此类转让的详细信息,该Punch Group将向Tokyo股票交易所报告此类报告的详细信息,并将提供此类报告的详细信息,并将提供公众的详细信息。
计算机键盘的演变可以追溯到1868年克里斯托弗·拉瑟姆·肖尔斯(Christopher Latham Sholes)的打字机发明。雷明顿公司从1877年开始的打字机大众营销在其广泛采用中发挥了重要作用。几个技术进步,包括电视机和打孔卡系统,有助于早期计算机键盘的开发。1946年,ENIAC计算机在1946年使用了打孔器读取器,1948年BINAC计算机的机电控制打字机进一步巩固了这一连接。在1960年代引入视频显示终端(VDT)彻底改变了用户界面,使用户可以看到他们在屏幕上键入的内容。此启用了更快的数据输入,编辑和编程。通过电键盘传输的VDT的直接电子冲动可显着减少处理时间。到1970年代末和1980年代初,所有计算机都使用了电子键盘和VDT,而Qwerty布局今天从sholes的发明中继承下来,今天仍然很突出。雷明顿公司开创了打字机的质量生产,导致标准计算机键盘的发展。根据传说,Qwerty布局是由Sholes和James Densmore开发的,以克服机械局限性。原始设计通过分开通用字母组合来最大程度地减少钥匙。尽管已经发明了其他布局,例如DVorak键盘,但由于其效率和熟悉程度,Qwerty仍然是最受欢迎的。新兴的电动打字机进一步合并打字机和计算机技术。皇家伯爵之家和埃米尔·鲍多特(Emile Baudot)等发明家改进了电视机机器,是键盘技术的突破。在1930年代,新键盘结合了打字机和电报技术,从而导致了关键系统的开发,这成为了早期添加机器的基础。关键技术被纳入ENIAC等早期计算机,而后来的设计具有电力打字机和磁带输入。到1964年,麻省理工学院,贝尔实验室和通用电气之间的合作导致了Multics的开发,Multics是一个分布的计算机系统,鼓励创建用于用户界面的视频显示终端(VDTS)。在计算机中打字技术的演变始于引入电动打字机,这使用户能够在视觉上看到他们正在键入的字符,从而使文本编辑和删除更加容易。这项创新还简化了编程,并使计算机更容易访问。早期键盘是基于电视机或关键的基础,但由于电力机械步骤减慢了数据传输的速度而有局限性。VDT技术和电子键盘的出现通过允许直接电子脉冲传输并节省时间来彻底改变计算。到1970年代末和1980年代初,所有计算机都使用了电子键盘和VDT。1990年代看到了手持设备的出现,从HP95LX开始,该设备开创了移动计算。最初,手持设备具有小的Qwerty键盘,使触摸键入不切实际。随着PDA的演变为包括Web访问,电子邮件和文字处理,引入了笔输入。但是,一开始,手写识别技术还不够强大。键盘产生机器可读文本(ASCII),这对于索引和搜索至关重要。手写可生产“数字墨水”,它适用于某些应用程序,但需要更多的内存,并且不如数字键盘准确。早期PDA在商业上不可行。苹果公司于1993年发布的牛顿项目很昂贵,其笔迹认可也很差。研究人员Goldberg和Richardson开发了一种简化的系统,称为“ Unistrokes”,将字母转换为单笔票进行输入。1996年发布的棕榈飞行员引入了涂鸦技术,使用户能够输入资本和小写字符。其他非钥匙板输入包括MDTIM和JOT,但由于数据捕获的记忆力更多,而与数字键盘相比,它们具有相似的限制。计算机键盘的演变是一段漫长而有趣的旅程,跨越了近两个世纪。从带有电报机的不起眼的开端到我们今天使用的时尚,多功能设备,键盘进行了重大的转换以满足不断变化的用户需求。####早期的早期开发,电报机中使用了物理钥匙和开关来编码信息。这项技术为现代键盘奠定了基础。1800年代看到打字机和电报的进步,进一步完善了键盘设计。键盘布局继续随着发短信的兴起而继续发展,通常会利用Qwerty风格的软键盘。#### Qwerty和Qwerty布局以外的标准成为具有软键盘的标准,但是其他布局(例如Fitaly,Cubon和Opti)也存在。随着语音识别技术的提高,其功能已添加到小型设备中,但没有取代软键盘。####键盘的未来随着数据输入对于发短信和其他应用程序越来越重要,键盘设计正在调整。像KALQ键盘一样的创新,Android设备上可用的分屏布局,旨在改善拇指型体验。键盘的演变可以追溯到1868年,托马斯·休斯(Thomas Hughes)发明了用于电报的钢琴风格的键盘。早期的计算机终端出现在20世纪初期,加州海军研究人员和Konrad Zuse的可编程计算机使用旧打字机进行了修改。20世纪中叶锯键板成为计算中的主食,带有打孔机器是前体。创新在20世纪后期加速,包括IBM的Selectric打字机启发键盘设计和DEC的VT50终端,其中包含集成的键盘和屏幕。关键里程碑包括IBM PC普及了F键盘,苹果的Lisa引入了GUI和鼠标减少键盘依赖性,Microsoft的天然键盘会引发符合人体工程学设计的变化。21世纪带来了更多的多功能性和连接性,无线键盘超过了销售中的有线模型。在整个旅程中,打字仍然是输入命令和数据的有效和直观的方式,在20世纪后期推动了键盘无处不在。第一个大众市场打字机于1874年发布,将Qwerty布局固定为打字的标准。后来,IBM的Selectric(1936)引入了一种可以旋转和倾斜以打印字母的类型球,从而可以轻松更改字体。当计算机出现时,他们采用了打字机的打字机制,这些机制最终演变成专用的计算机键盘。在1950年代,打孔器被用于输入ENIAC等早期计算机的数据,这些计算机读取了用代表数据和程序说明的孔读取卡片。IBM 1050终端(1964)将打字机机制与桌子和调制解调器相结合,创建了一个集成的系统。DEC VT50(1967)带有键盘和CRT显示屏的视频终端,使用户可以在输出时看到输出。Xerox Alto(1970)介绍了图形用户界面(GUI),使用鼠标进行交互而不是文本命令,从而降低了键盘依赖性。尽管如此,键盘在个人计算中仍然很重要,尤其是在1970年代和1980年代PC进入房屋和办公室时。标准是由IBM PC的模型F键盘(1981)和Apple Lisa(1983)等有影响力的模型设定的,该模型集成了鼠标以进行图形相互作用。IBM模型M(1984)完善了PC键盘,确保了IBM PC和克隆的一致性。后来,微软引入了天然键盘(1994年),引发了人体工程学的设计趋势,而苹果简化了其iMac(1999)的简化键盘,开始向没有单独的光标垫或功能键的简约设计转变。开关测试人员有助于识别首选的机械开关。现代键盘不断发展,基于具有新功能的原始Qwerty布局。现代键盘的关键特征包括无线连接,专业,自定义,可移植性,RGB照明,集成输入和增强的键入功能。今天的键盘生态系统提供了针对特定用例的各种设计。喜欢重音字符,专门的软件从上下文定制中受益,以提高生产率。键盘配件增强了多功能性,人体工程学和样式:腕部休息会减轻压力,钥匙开关O形圈噪声噪音和自定义键盘个性化美学。人体工程学因素通过促进适当的姿势来减少键入应变:将键盘定位在肘部水平,避免弯曲手腕,将垫片用于笔记本电脑,并在长时间的课程后休息。遵循基本的人体工程学原理可以使计算机键盘长期安全使用。现在,让我们凝视着令人兴奋的键盘可能性:增强现实键盘,脑部计算机接口,智能手套键盘,触觉娱乐,灵活的电子墨水显示器,上下文自动版,无线功率和神经反馈。激进的新设计将与传统模型共存,因为核心机制已被证明是永恒的。由于其触觉效率,持久的键盘仍然是一个积分的计算机接口。我们可以以其他输入机制不切实际地将思想转变为命令和内容。早期计算机缺乏显示和鼠标,而键盘是唯一可行的界面。但是,即使出现了新的选项,键盘的生产力也会执行许多任务。计算机键盘由于其众多优势而仍然是计算中必不可少的一部分:由于它们在大多数计算机中的广泛可用性,它们熟悉,响应,多功能,生产力和无处不在。虽然语音或笔迹(如语音或笔迹)在某些情况下已成为可行的替代方案,但在键盘上打字的速度和准确性继续使其成为生产力的核心组成部分。人类与键盘之间的这种共生关系持续了近两个世纪,键盘适应和发展以适应不断变化的人类行为和技术进步。因此,键盘的设计反映了人类需求与技术能力之间正在进行的相互作用,这是无情驱动创新的缩影。
在乌干达开展蛋糕业务需要仔细计划和考虑各种因素。初始投资的范围从1亿个乌干达先令范围内,包括设备,产品,营销,租金,工资和公用事业等成本。开始,必须研究市场,获得必要的许可,并在相关当局注册业务。这需要获取独特的企业名称,注册公司并获得注册证书。此外,处理食品的企业必须获得卫生和消防部的许可,以确保员工和消费者的安全。业务计划对于有效管理财务并避免超支至关重要。应采用有效的营销策略,包括海报和社交媒体平台,以吸引客户。分析竞争对手的优势和劣势也可以有助于开发成功的商业模式。针对城市中心附近的城市地区或购物中心的城市地区通常会产生最佳效果。以少量费用提供送货服务可以提高客户满意度,同时寻找以有竞争力的价格提供优质商品的供应商对于最大化利润至关重要。全面的商业计划对于推出和运营成功的面包店至关重要。此路线图详细介绍了您的愿景,运营策略和财务计划,以帮助建立面包店的身份并确保增长资金。本文打破了面包店业务计划的关键组成部分,提供了一个示例来帮助您制作自己的制作。让我们潜入!我们的面包店业务计划涵盖了所有关键要素,详细的操作,营销策略,市场环境,竞争对手,管理团队和财务预测。它对业务成功途径提供了整体看法。**执行摘要**概述了您面包店的业务构想,市场研究,管理团队和财务计划。**业务概述**详细介绍了您的面包店提供的内容及其运营方式:**面包店和位置**:描述您的面包店的布局,功能,以及为什么其位置非常适合客户。***操作**:概述了每日面包店运营,包括烘焙时间表,人员配备和成分采购。***市场概述**:查看面包店市场,寻找竞争对手以及使您的面包店与众不同的原因。**策略**描述了您种植面包店并吸引客户的计划:** SWOT分析**:分析与您的面包店相关的优势,劣势,机会和威胁。***营销计划**:概述了促进面包店并保持客户回来的方法。***时间表**:从开始到第一年,列出了重要的目标和里程碑。**管理**分享有关谁经营面包店及其职责的信息。**财务计划**预测面包店的财务前景超过5年,包括收入,利润率和主要支出。详细说明了他们对面包店成功的角色和贡献,包括烹饪专业知识,业务管理经验和社区关系。对财务预测的摘要,例如未来五年的收入和利润,也至关重要。在执行摘要中概述业务概述时,至关重要的是提供有关面包店的名称,位置和日常运营的清晰简明信息。一个独特的销售主张(USP)将面包店与竞争对手区分开来,无论是手工技术,无麸质选择还是可持续性。在执行摘要中应强调此USP,以吸引观众的兴趣并展示业务的独特价值。该公司在酒店业拥有丰富的经验,并以约翰的烹饪学校背景为补充。此专业知识增强了管理和产品创新。您的面包店的独特卖点对于将其与市场上的竞争对手区分开来至关重要。进行竞争分析对于为您的业务计划奠定基础至关重要。通过检查竞争对手的各个运营方面,您将获得宝贵的见解,以确保您的业务计划坚固且量身定制,以在当今的市场环境中取得成功。通过绘制当地的面包店和糕点店来识别您的竞争对手。您的直接竞争对手可能包括附近的面包店,专门从事工匠面包,以及带有内部面包店的大型杂货店。不要忽略咖啡馆或甜点商店(例如提供一系列烘焙食品)的间接竞争者。使用在线工具(例如Google Map)来了解竞争对手的地理分布。评论平台,例如Yelp和TripAdvisor,用于客户评论和评级,从而提供了竞争者的优势和劣势的见解。反思面包店的独特价值主张。通过检查这些竞争对手的策略: *烘焙食品产品:朝着健康意识烘焙或创新糕点创作的趋势。*烘焙技术:传统手工面包与现代和时尚的糕点创作。*定价策略:考虑优质产品或预算友好的选择,将价格与竞争对手的价格进行比较。*营销策略:社交媒体的存在,当地社区参与或口碑营销策略。*客户体验:邀请氛围,友好的员工和增强的客户体验。*操作效率:以技术为导向的流程,用于简化烘焙和服务。通过客户反馈和行业趋势确定市场差距。例如,如果竞争对手没有满足这一需求,对工匠和本地食材的兴趣日益增长,则可能代表市场机会。考虑您的位置:一个繁忙的市区区域可能会专注于快速服务和抢购物品,而居民社区可以利用更轻松的,首先对面包店进行SWOT分析,突出了诸如手工烘焙技能和独特产品,弱点,诸如高分子成本,僵硬的竞争,较高的竞争,诸如原始材料价格之类的潜在威胁之类的弱点。接下来,制定一项营销计划,重点是通过有针对性的广告,季节性促销,社交媒体参与和社区参与来吸引客户。与当地企业实施忠诚度计划,研讨会和合作以推动销售。根据客户的喜好个性化奖励。与您的受众建立联系,利用各种营销渠道:具有高质量图像,客户推荐和易于导航的网站;在线订购取货或交货; Instagram,Facebook,Pinterest和幕后内容;响应迅速的社交媒体参与;高流量区域和目标位置的传单;地方伙伴关系和交叉促销。通过活动,农民市场,慈善烘焙销售,烘焙研讨会和教育会议与社区互动。提供与假期或季节相关的季节性促销活动,例如节日饼干礼品盒或春季纸杯蛋糕的口味。实施忠诚度计划,例如分层奖励系统或打孔卡,可兑换折扣或免费物品。面包店不仅会产生收入,还可以向客户提供有关其产品的知识。电子商务设置允许在线订购专业商品,定制蛋糕或预包装的烘焙食品,以进行拾取或交付。这可以最大程度地减少购物车的放弃,并创建无缝的结帐经验。为定制的蛋糕设计或活动餐饮提供了虚拟咨询,包括虚拟品尝或会议,以讨论个性化的要求。可以通过订阅模型来安排烘焙食品的常规交付,并根据客户的喜好获得不同的好处。奖励计划通过奖励客户可以兑换折扣或免费项目来激励重复业务。个性化优惠是根据购买行为来提高参与度的。建立了详细的时间表,标记了面包店的发射,营销计划和潜在扩展目标的关键里程碑。管理部分概述了面包店的管理团队及其在日常运营和战略方向中的角色。《财务计划》部分对包括收入,费用和盈利能力在内的财务预测进行了全面分析,概述了获得资金和管理现金流的方法。提供财务报表的快照以及关键的假设,例如客户,价格,费用等。
Krabbe病(KD)是由GALC基因突变引起的溶酶体储存疾病(LSD)。有50多种单遗传LSD,在很大程度上阻碍了儿童的正常发育,并且经常导致过早死亡。目前尚无LSD的治疗方法,可用的治疗通常不足,表演短,并且并非没有合并症或长期副作用。过去30年中,我们对LSD病理学以及治疗方案的理解取得了重大进步。最近根据这些进展开始了两项基于基因治疗的临床试验,NCT04693598和NCT04771416。本评论将讨论我们对KD的了解如何到达今天的位置,重点关注临床研究,以及发现的内容如何证明对其他LSD的治疗有益。
早期计算历史跨越数千年,算盘是最早用于计算的设备之一。巴比伦人在公元前 300 年创造了早期版本,而后来的版本则在公元 1200 年左右出现在中国和日本。在 17 世纪,布莱斯·帕斯卡和威廉·莱布尼茨等发明家开发了机械计算器,包括帕斯卡的齿轮式机器。查尔斯·巴贝奇于 1822 年设计了第一台机械计算机差分机。虽然他的设计由于资金问题而从未完成,但它为更复杂的设计奠定了基础。算法和编程的概念在这一时期开始形成。洛夫莱斯伯爵夫人奥古斯塔·艾达·金(拜伦)通常被认为是第一位程序员,她在 1843 年开发了一种名为 Ada 的计算机语言。她写了关于查尔斯·巴贝奇的分析机的笔记,该机旨在使用打孔卡进行计算。随着技术的进步,计算设备也在不断发展。第一台电子计算机出现于 20 世纪中叶,ENIAC(电子数字积分计算器)是 1946 年开发的第一台大型数字计算机。真空管最初用作电子开关,但后来被晶体管取代。晶体管的发明导致了集成电路的发展,集成电路涉及在单个硅片上放置多个晶体管设备。微处理器通过将中央处理器 (CPU) 封装到单个芯片上,彻底改变了计算方式。这标志着第四代计算机的开始,并为我们今天使用的现代计算系统铺平了道路。计算的历史丰富多彩,跨越了几个世纪和大洲。从算盘等古老设备到现在主宰我们生活的复杂机器,每一项创新都建立在上一项创新的基础上,从而带来了我们在现代技术中看到的令人难以置信的进步。英特尔公司推出了第一款微处理器芯片 Intel 4004,其工作频率为 108 kHz,包含大约 2300 个晶体管,相当于 15 台 IBM 个人电脑。 1981 年 8 月 12 日,IBM 发布了其新计算机 IBM PC。2004 年,IBM 将其 PC 业务出售给联想。苹果电脑公司由史蒂夫·乔布斯和史蒂夫·沃兹尼亚克于 1975 年创立,并于 1984 年推出了带有图形用户界面 (GUI) 的 Macintosh。笔记本电脑从 1981 年亚当·奥斯本的 Osborne 1 发展到 1988 年康柏的彩屏笔记本电脑,随后是 2008 年最薄的笔记本电脑 MacBook Air 和 2011 年戴尔 XPS 15Z。微软继续更新 Windows,推出其最新版本“Windows 8”。Linux 操作系统作为 MS Windows 的开源替代品而广受欢迎。最大的 PC 制造商惠普计划出售其 PC 部门,而苹果仍然是个人电脑的主要参与者,尤其是在创意市场。谷歌成为互联网解决方案的重要参与者。从 1990 年到今天,计算机的发展趋势是速度更快、体积更小、更可靠、更便宜、更易于使用。第五代计算设备专注于人工智能、并行处理以及开发响应自然语言输入并具有学习和自我组织的设备。计算机是一种数字设备,可以对其进行编程以将信息从一种形式转换为另一种形式,并且只理解两种状态(开/关或 0/1)。传统计算机包括 NASA 等组织使用的超级计算机和 20 世纪 50 年代为大型企业推出的大型计算机。个人计算机是小型、独立的设备,使用微处理器拥有自己的 CPU。硬件是指计算机的物理组件,而软件则由告诉计算机做什么的程序(指令)组成,存储在硬盘、CD-ROM、软盘或磁带等介质上。处理器是计算机的大脑,包括系统板、接口板和扩展槽。计算机的大脑是 CPU(中央处理器),这是一个或多个集成电路上的复杂电子电路,用于执行软件指令并与其他系统部件(尤其是 RAM 和输入设备)通信。CPU 是计算机的心脏。RAM(随机存取存储器)是一种临时存储器,以电子方式存储 ON 和 OFF 位,但断电时,RAM 中的所有内容都会丢失。它是易失性的,用于存储软件和数据。ROM(只读存储器)是用于永久存储启动指令和其他关键信息的集成电路。用户无法更改或删除此信息;它由制造商固定。ROM 也称为 ROM BIOS(基本输入输出系统软件)。ROM 包含启动指令和输入输出设备的低级处理,例如与键盘和显示器的通信。计算机经历了几代:第一代(1940-1956 年)使用真空管作为电路,使用磁鼓作为存储器。UNIVAC 和 ENIAC 是第一代计算机的代表。第二代计算机(1956-1963 年)使用晶体管,允许使用符号或汇编语言以文字指定指令。在此期间开发了 COBOL、FORTRAN、ALGOL 和 SNOBOL 等高级编程语言。与第一代计算机相比,第二代计算机的优势包括耗电量更少、体积更小、硬件故障更少、编程更简单。第四代计算机的性能和效率比前代计算机更高。这些系统使用微处理器,将数千个集成电路封装在单个硅片上,从而提高了处理速度。半导体存储器的集成实现了更快的数据传输速率,使硬盘更小、更便宜、更宽敞。此外,软盘和磁带的使用促进了计算机之间的数据移植,而图形用户界面 (GUI)、鼠标和手持设备的开发进一步提升了用户体验。在此期间,出现了 MS-DOS、MS-Windows、UNIX 和 Apple 专有系统等新操作系统,并辅以文字处理软件包、电子表格软件和图形工具。计算机的发展导致了更快、更大的主存储器和辅助存储器的发展。这使得可以在各种环境中使用的通用计算机得以创建。图形用户界面 (GUI) 简化了计算机的使用,使其可供更广泛的受众使用。因此,计算机成为办公室和家庭环境中日常生活中不可或缺的一部分。网络功能进一步推动了计算机的广泛采用,这促进了资源共享和硬件和软件的有效利用。第五代计算机正在以人工智能为核心进行开发。虽然仍处于开发阶段,但语音识别等应用程序已经在今天使用。目标是创建能够响应自然语言输入并能够学习和自我组织的设备。第五代计算机的两种主要编程语言是 LISP 和 Prolog。根据计算机的速度、数据存储容量和价格,计算机大致可分为四类。这些分类包括:1. 主存储器:接受数据或指令 2. 二级存储器:存储数据 3. 处理:处理数据 4. 输出:显示结果 5. 控制单元:控制和协调计算机内的所有操作 数据和指令的流动由控制单元控制,从而实现高效的处理和输出。目标是创建能够响应自然语言输入并能够学习和自我组织的设备。第五代计算机的两种主要编程语言是 LISP 和 Prolog。根据计算机的速度、数据存储容量和价格,计算机大致可分为四类。这些分类包括:1. 主存储器:接受数据或指令 2. 二级存储器:存储数据 3. 处理:处理数据 4. 输出:显示结果 5. 控制单元:控制和协调计算机内的所有操作 数据和指令的流动由控制单元控制,从而实现高效的处理和输出。目标是创建能够响应自然语言输入并能够学习和自我组织的设备。第五代计算机的两种主要编程语言是 LISP 和 Prolog。根据计算机的速度、数据存储容量和价格,计算机大致可分为四类。这些分类包括:1. 主存储器:接受数据或指令 2. 二级存储器:存储数据 3. 处理:处理数据 4. 输出:显示结果 5. 控制单元:控制和协调计算机内的所有操作 数据和指令的流动由控制单元控制,从而实现高效的处理和输出。
AKCEPT数据,执行功能,显示重新塑料并根据需要存储thoz数据或重新塑造的电子设备iz iz iz iz。它是对硬件和软件资源的紧缩,这些硬件和软件资源使thiz用户不断地提供各种功能。硬件iz的物理komponents的物理komponents,例如AZ A处理器,内存设备,监视器,键盘等,而软件IZ IZ一组会通过硬件资源适当地使用Funcion的训练或指令。Thiz Quipooter具有三个ImportInt Komponent:输入单元,中央处理单元(CPU)和输出单元。将在下面讨论:1。输入单元:附加到Thiz Compooter的输入设备的输入单元Konsist。这些设备将输入输入,并将其konvert konvert到Th Quipooter unordands的二进制语言中。一些常见的输入将AR键盘,鼠标,操纵杆,扫描仪等分离2。中央处理单元(CPU):onz th信息iz通过输入设备输入了台式机,处理器对其进行操作。th cpu iz称其为Th Qpooter的大脑,因为它是TH钳子的控制中心。它首先从内存中指令说明,然后对其进行解释,以便知道要做什么。如果需要,请从内存或输入设备获取数据。THEFTER CPU执行或执行所需的KOMPONTAIN,ZEN要么存储TH输出,要么在输出devize上显示它。th cpu haz三个主要的komponents,对不同的funkcions负责:算术逻辑单元(ALU),控制单元(CU)和内存rezisters。算术kalkles包括加法,减法,乘法和分裂。A.算术和逻辑单元(ALU):Alu执行数学kallations并进行逻辑策略。逻辑说明参与了两个数据项的比较,以查看一个iz iz iz更大或更小或相等。Th算术逻辑单元iz th cpu的主要功能是TH CPU的基本构建块。B.控制单元:TH控制单元Koordines和Kontrols TH数据流入和从CPU中进出,以及Kontrols Alu的所有操作,内存Rezisters以及输入/输出单元。iz还负有责任地执行存储在TH程序中的所有指令。它对提取的指令进行解码,对其进行解释并将控制信号发送到输入/输出devized,直到Alu和Memory正确地完成IZ的操作。控制单元充当计算机的中枢神经系统或大脑,为各种组件提供信号以执行指令。CPU中的内存寄存器临时存储处理器使用的数据。这些寄存器的尺寸可以变化(16位,32位,64位等)每个都有一个特定的功能,例如存储数据或说明。用户可以将这些寄存器用于存储操作数,中间结果等。累加器(ACC)是ALU内的主要寄存器,持有操作数的一个操作数。附加到CPU的内部内存都存储数据和指令,并将其分为许多具有唯一地址的存储位置。这允许计算机快速访问任何位置,而无需搜索整个内存。我们可以使用所有这些组件轻松执行任务。程序执行时,将其数据复制到内部内存,并保留在那里,直到执行结束为止。存储器单元是永久存储数据和指令的主要存储组件,以便于检索。输出设备(例如监视器,打印机和绘图器)附着以形成输出单元,将CPU转换为可读格式的二进制数据。输出单元接受来自CPU的信息,并以用户友好的格式显示。计算机的特性包括速度 - 能够每秒执行数百万计算 - 精度,勤奋,多功能性和存储容量。计算机可以精确处理复杂的任务,同时执行多个操作,存储大量数据或说明,并根据需要检索它们。总而言之,计算机已经使用了多年,并广泛传播其用法。三个基本组件是输入单元,CPU和输出单元。但是,计算机功能中还有其他关键组件。内存单元,控制单元以及算术和逻辑单元启用复杂操作。常见问题解答:什么是输入单元?输入单元可让用户输入数据并命令到计算机中。它如何工作?输入单元将用户操作或数据转换为计算机处理的电信号。什么是CPU?CPU通过执行程序指令执行大多数处理任务。其主要部分是算术逻辑单元(ALU),控制单元(CU)和寄存器。CPU如何处理数据?它从内存中获取指令,解码它们,执行指令,然后存储结果。计算机硬件包括物理组件,例如CPU,RAM,主板,存储,图形卡,声卡,计算机箱,监视器,鼠标,键盘和扬声器。软件是书面指令,可以由硬件存储和运行。硬件由软件指示执行命令或说明。两者的组合形式可用的计算系统。早期计算设备可以追溯到17世纪。法国数学家布莱斯·帕斯卡(Blaise Pascal)设计了一种基于齿轮的设备,用于增加和减法,销售约50款。阶梯式的Reckoner是由Gottfried Leibniz发明的,到1676年,可能会分裂和乘。但是,由于设计缺陷和制造局限性,它并不是很有用。类似的设备一直在使用直到1970年代。在19世纪,查尔斯·巴巴奇(Charles Babbage)设计了一种机械装置,用于计算多项式和从未构建的通用计算机。最早的计算机合并了用于输入和输出,内存,算术单元和原始编程语言的打孔卡。Alan Turing于1936年开发了通用图灵机,以建模任何类型的计算机。证明没有计算机可以解决决策问题。计算机存储是现代计算,连接硬件和软件的基础。布尔代数由乔治·布尔(George Boole)在19世纪中叶发明,构成了电路建模的基础,用于晶体管和综合电路。它包含数十亿个小晶体管。在1945年,艾伦·图灵(Alan Turing)设计了自动计算引擎,而约翰·冯·诺伊曼(John von Neumann)开发了冯·诺伊曼(Von Neumann)体系结构,该体系结构具有集中记忆,具有优先访问内存的CPU,以及I/O单元。此设计已成为大多数现代计算机的模板。计算机架构优先考虑成本,速度,可用性和能源效率等目标。设计人员必须了解硬件要求和计算的各个方面,包括编译器和集成电路设计。成本限制降低了利润率,由于改进的制造技术,组件的成本下降。基于冯·诺伊曼(Von Neumann)1945年的设计,最常见的指令集架构涉及CISC,RISC,向量操作或混合模式。isas是共享硬件系统,其中有点指示I/O模式。基于RISC的机器受益于使用更少的说明。这降低了复杂性并增加了注册用法。在RISC在1980年代发明后,其管道和缓存的建筑变得越来越受欢迎。他们将CISC体系结构取代了资源受限的设备,例如手机。在1986年至2003年之间,硬件性能提高了50%以上。这允许开发平板电脑和移动设备。在21世纪,绩效提高是通过利用并行性来驱动的。可以通过数据或任务并行性来实现并行性。这是由各种硬件策略(例如指导级并行性和图形处理单元)所容纳的。虚拟内存简化了程序的地址。微结构涉及高级硬件设计问题,例如CPU,内存和内存互连。内存层次结构可确保更快的内存更接近CPU,而存储器则用于存储较慢。计算机处理器会产生热量,这会影响性能和组件寿命。热管理系统,例如空气冷却器和液体冷却器,在计算机中很常见。数据中心使用更高级的冷却解决方案来维持安全的工作温度。现代计算机在性能和热量管理之间面临微妙的平衡。[31]尽管它们可能很昂贵,但可以使用更有效的模型。[32]但是,即使是最强大的处理器也具有不得超过的限制以防止过热。[33]因此,计算机将自动防止其性能,或者在必要时关闭,以保护其硬件免受过热堆积的影响。[34]对于需要创新的冷却系统才能有效运行的较小,更快的芯片尤其如此。[35]除了前面提到的组件(例如监视器和主板)外,还有其他几个关键的硬件元素构成了个人计算机。这些包括CPU,RAM,扩展卡,电源单元,光盘驱动器,硬盘驱动器,键盘,键盘,鼠标等。[36]台式计算机通常配备一个单独的监视器,键盘和鼠标,而笔记本电脑将这些组件集成到一个紧凑的情况下。[37]便携式平板电脑和笔记本电脑由于便利性和多功能性而变得越来越受欢迎。它们通常以触摸屏为主要输入设备,并且可能包括折叠键盘或外部连接以增加功能。[38]一些模型甚至允许用户分离键盘,从而有效地将其变成2英寸1片平板电脑笔记本电脑混合动力车。[39]手机将延长的电池寿命和便携性优先于原始性能。他们通常具有一系列功能,包括相机,GPS设备,扬声器和麦克风,[40],但通常要求用户与较大的计算机相比,在功能方面做出妥协。[41]这些设备的功率和数据连接可能会因特定模型或类型而变化很大。个人计算机比大型机或超级计算机要小得多且价格便宜,这些计算机专为大规模计算而设计,可能耗资数亿美元。相比之下,个人计算机用于浏览互联网和文字处理等日常任务。微型计算机是一种计算机,在大小和价格方面介于这两个极端之间。它是在1960年代开发的,它是大型机和中型计算机的便宜替代品。超级计算机专为特定任务而设计,例如运行复杂的模拟或分析大型数据集,并且由于其高性能功能而可能非常昂贵。仓库比例计算机类似于群集计算机,但在更大的范围内,在软件中用作服务(SaaS)应用程序。他们优先考虑每次操作和电力使用成本,用于硬件和基础设施的价格超过1亿美元。虚拟硬件是模仿物理硬件功能的软件,通常用于IaaS和Paas等云计算服务。嵌入式系统的范围从非常基本到高级处理器,并且通常是根据其价格而不是性能功能来选择的。一个计算机盒包围了大多数台式计算机的组件,为内部零件提供机械支持和保护。它还有助于控制电磁干扰并防止静电放电。使用的案例类型取决于计算机的预期目的,其中一些提供了更多的扩展室或对便携性的影响保护。符合ATX标准,将AC功率转换为120至277伏在较低电压(例如12、5或3.3伏)的DC功率。计算机主板是主要组件,具有通过端口和扩展插槽连接CPU,RAM,磁盘驱动器和外围设备的集成电路的板。关键组件包括至少一个CPU,该CPU执行启用计算机功能的计算,解释RAM中的程序说明并将结果发送回相关组件。CPU通常通过散热器和风扇或冷却系统冷却。许多较新的CPU具有播放GPU和1 GHz和5 GHz之间的时钟速度。有一种增加核心增加并行性的趋势。内部总线将CPU连接到主内存,通过几行同时通信。带有多个处理器的计算机需要由Northbridge管理的互连总线,而Southbridge则管理较慢的外围设备。RAM商店基于用法积极访问层次结构中的代码和数据,其寄存器最接近CPU,其容量有限。多个缓存区域的容量比寄存器更大,但小于主内存,通过预摘要减少延迟。如果需要缓存数据,则可以从主内存中访问。缓存通常是SRAM,而主内存通常是大量的。如果计算机关闭,其永久存储或非易失性存储器通常以比常规内存更低的成本提供更高的容量,但是由于硬盘驱动器中的历史用途,这些内存需要更长的时间才能访问,而硬盘驱动器的历史用途则由更快的固态驱动器(SSD)代替。存储数据的其他选项包括USB驱动器和云存储。ROM(仅读取内存)包含计算机上电动机时运行的BIOS,而新的主板则使用统一的可扩展固件接口(UEFI)而不是BIOS。功率MOSFET控制电压调节器模块(VRM),而CMOS电池为BIOS芯片中日期和时间的CMOS存储器提供动力。可以通过扩展卡通过扩展插槽添加到计算机中,以增强功能,尽管现代计算机通常具有集成的GPU。大多数计算机还具有外部数据总线(例如USB)来连接外围设备,例如键盘,鼠标,显示器,打印机和网络接口控制器。2023年的计算机硬件的全球收入达到7051.7亿美元。电子废物管理至关重要,这是由于计算机硬件中存在的危险材料。处置未经授权的计算机是非法的,并且必须通过政府批准的设施进行回收。可以通过删除可重复使用的零件(例如RAM,图形卡和硬盘驱动器)来简化回收计算机。可以回收许多计算机硬件中使用的有价值的材料,以重复使用,降低成本和环境危害。有毒物质(例如铅,汞和镉)通常在计算机组件中发现,构成健康风险,包括智力发育,癌症和器官损害受损。电子废物的不当处理可能会导致严重的环境污染和健康问题。相比之下,回收计算机硬件被认为是环保的,因为它可以防止危险废物进入大气。存在严格的立法,以执行可持续的处置惯例,包括《欧盟和美国国家计算机回收法》的废物电气和电子设备指令。电子循环是指收集,修复,拆卸,经纪和回收电子设备的过程。像戴尔(Dell)和苹果公司(Apple)这样的公司参加了电子环保计划,以回收各种电子产品,减少电子废物并促进更可持续的未来。在捐赠或回收计算机时,请考虑对教育机构,医院和其他非营利组织进行翻新和重复使用旧计算机的组织。例如,计算机援助国际接受各种捐款,以重新利用这些目的的旧计算机。Kevin(2022)在他的书《探索计算机硬件:理解计算机硬件,组件,外围设备和网络的插图指南》中讨论了计算机硬件的主题。本书涵盖了计算机硬件及其组件的各个方面,包括网络。计算机硬件是众多资源的主题,包括教科书,例如Wang,Shuangbao Paul的计算机架构和组织。这些材料可通过Wikimedia Commons,Wikibooks和Wikiversity等各种在线平台访问。此外,可以在Wikipedia的页面上找到有关计算机硬件的信息。
处理过时的软件已成为包括开源行业在内的各个行业的紧迫问题。本期为软件工程研究人员提供了机会,有机会适应传统的程序分析技术,以应对重构和现代化挑战。生成AI的进步已经为代码生成,翻译和错误修复以及其他任务开辟了新的途径。公司渴望探索可扩展的解决方案,以进行自动测试,重构和代码生成。本教程旨在提供旧软件现代化的概述,并在AI辅助软件和生成AI的兴起中强调了其意义。它将讨论由整体遗产代码和系统引起的行业挑战,引入建筑范式以现代化的老化软件,并突出需要注意的研究和工程问题。Daniel Thul等人,Xue Han等人,Daiki Kimura等人,Oytun Ulutan等人和Shivali Agarwal等人的研究论文。展示了解决旧软件现代化的重要性。这项工作有可能推动软件工程的创新,使IBM这样的公司能够开发最先进的解决方案。IBM研究在过去一年中在AI,量子计算,半导体和基本研究方面取得了长足的进步。该组织在全球12位实验室中的3,000名研究人员推动了科学领域的界限,并设想了以前似乎不可能的计算和扩展思想中的新可能性。我们的开发路线图将使我们走向这一未来。在过去的一年中,IBM研究在革新企业内的AI能力方面发挥了关键作用。就像AI在短时间内在我们的日常生活中深深地根深蒂固一样,世界上大多数有价值的业务数据仍然锁定在无法访问的格式中,例如PDF和电子表格。在2024年,IBM Research领导了该公司主要AI发行的指控,该公司旨在满足拥有数百万最终用户的企业。亮点之一是在五月的Think上推出了TruxStlab,这是一个开源项目,通过启用新知识和技能的协作添加来简化微调LLM。IBM Research和Red Hat之间的这种合作导致了Red Hat Enterprise Linux AI的功能强大的工具。TenchERTLAB脱颖而出,因为其能够允许全球社区创建和合并更改LLM的能力,而无需从头开始重新培训整个模型。此功能使全球人们更容易找到使用LLMS解决复杂问题的创新方法。此外,IBM Research还使用TerchandLab改善了其开源花岗岩模型,该模型随后于10月发布。在IBM Research的数据和模型工厂中设计和培训了新的花岗岩8B和2B模型。这些企业级模型的执行方式类似于较大的基础模型,但对于诸如抹布,分类,摘要,实体提取和工具使用的企业至关重要的任务成本的一小部分。在12月,IBM发布了其花岗岩3.1型号,每种型号的上下文长度为128K。经过超过12万亿代币的高质量数据培训,这些模型对其数据源具有完全透明的开源。花岗岩3.1 8b指示模型显着提高了其前身的性能改进,并在其同行中占据了拥抱面孔OpenLLM排行榜基准的平均得分之一。此外,IBM发布了一个新的嵌入模型系列,这些模型提供了12种语言的多语言支持,类似于它们的生成性。作为较早的Granite 3.0发射的一部分,Granite Guardian也是开源的。这使开发人员可以通过检查用户提示和LLM的响应来实施安全护栏,以了解社交偏见,仇恨言论,毒性,亵渎,暴力等风险。我们继续使用AI模型来推动界限,尤其是与抹布技术配对时。这种组合使我们能够评估背景相关性,回答相关性和扎根。我们的最新花岗岩3.1型号是8B强大的巨头,可提供无与伦比的风险和损害检测功能。我们还升级了我们的花岗岩时间序列模型,该模型以十倍的利润优于更大的模型。这些进步对于试图根据历史数据准确预测未来事件的企业尤为重要。与传统的LLM不同,我们的花岗岩TTM(TinyTimemixers)系列提供紧凑而高性能的时间序列型号,现在可以在Beta版本的Watsonx.ai的时间表预测API和SDK的Beta版本中提供。这个新的8B代码模型还具有对代理功能的支持。我们相信,我们的开源社区在这些模型中看到了价值,迄今为止,拥抱面孔的下载量超过500万。我们的下一代代码助理,由花岗岩代码模型提供支持,为C,C ++,GO,Java和Python等语言提供通用编码帮助。除了我们的内部软件开发管道改进外,在某些情况下增强了90%的增长,Granite代码模型现在还通过Instana,Watsonx Struckestrate和Maximo等产品中的产品,业务和行业4.0自动化为新的用例,为新的用例提供了动力。我们的花岗岩型号现在可以在包括Ollama,LM Studio,AWS,Nvidia,Google Vertex,Samsung等的各种平台上使用。建立在花岗岩3系的成功基础上,我们正在努力实现一个未来,AI代理可以通过称为Bee的开源框架可以轻松地解决业务需求。这使代理商可以快速开发业务应用程序。与美国国家航空航天局合作开发的气候和天气模式,用于跟踪重大的环境问题,例如西班牙的洪水破坏,亚马逊森林砍伐以及美国城市的热岛。我们很自豪地庆祝由IBM和META共同创立的AI联盟一年,旨在推动开放和负责的AI开发。该计划已发展为23个国家 /地区的140名成员,为负责任的模型,AI硬件和安全计划组成工作组。随着对AI的需求的增长,很明显,传统的CPU和GPU正在努力与这些模型的复杂性保持同步。我们需要创建从一开始设计的新设备,以有效地处理AI需求。IBM在半导体和基础设施中揭示了2024年在半导体和基础设施研究团队中发生的一些重大突破,重点是规模。8月,IBM揭开了Spyre,这是一种新的AI ACELERATOR芯片,用于子孙后代的Z和Power Systems,灵感来自AIU原型设计和Telum Chip的工作。这一突破是在意识到AI工作流程需要极低的AI推断后的突破。spyre具有32个单独的加速器芯,并包含使用5 nm节点工艺技术生产的14英里电线连接的256亿晶体管。芯片设计为聚集在一起,为单个IBM Z系统添加了更多的加速器核。与Spyre一起,企业可以在Z上部署尖端的AI软件,同时受益于IBM Z的安全性和可靠性。IBMResearch也一直在探索更有效地服务模型的方法。去年,该团队推出了其脑启发的AIU Northpole芯片,该芯片将记忆和加工单元共同取消,拆除了Von Neumann瓶颈。今年,在Northpole的硬件研究人员与AI研究人员之间的合作中,该团队使用Northpole用于生成模型创建了一个新的研究系统。该团队的潜伏期低于1毫秒的延迟,比下一个节能的GPU快了近47倍,而能量却减少了近73倍。另一个重大突破是在共包装光学领域的。此设备可以在硅芯片边缘的高密度光纤束,从而可以通过聚合物纤维进行直接通信。IBM Research Semiconductors部门中的一个团队生产了世界上第一个成功的聚合物光学波导,将光学的带宽带到了芯片边缘。该团队证明了光通道50微米的音高的可行性,这比以前的设计尺寸减少了80%。IBM研究人员在芯片设计和制造方面取得了重大突破。 他们开发了一种使用250微米螺距的新设备,该设备可能会缩小至20-25微米,从而大大增加带宽。 这项创新可能会导致AI模型的更快培训时间,并有可能节省能源,等同于每年为5,000个美国房屋供电。 此外,IBM的团队在缩小晶体管和使用Rapidus技术的2纳米过程设备方面取得了进步。 他们通过2纳米工艺成功构建了芯片,可以进行复杂的计算而不会过多的能耗。 这些突破增强了纳米片多VT技术,以替代当前的FinFET设备。 团队还使用高NA EUV系统从事EUV光刻,这使设计高性能逻辑设备可以扩展纳米片时代,并使未来垂直堆叠的晶体管超过1 nm节点。 IBM已经证明了降至21 nm螺距的线条的金属化,从而使铜达马斯斯互连的集成能够继续进行。 这些创新不仅是研究的努力;它们将变成可以大规模部署以解决实际业务问题的产品。IBM研究人员在芯片设计和制造方面取得了重大突破。他们开发了一种使用250微米螺距的新设备,该设备可能会缩小至20-25微米,从而大大增加带宽。这项创新可能会导致AI模型的更快培训时间,并有可能节省能源,等同于每年为5,000个美国房屋供电。此外,IBM的团队在缩小晶体管和使用Rapidus技术的2纳米过程设备方面取得了进步。他们通过2纳米工艺成功构建了芯片,可以进行复杂的计算而不会过多的能耗。这些突破增强了纳米片多VT技术,以替代当前的FinFET设备。团队还使用高NA EUV系统从事EUV光刻,这使设计高性能逻辑设备可以扩展纳米片时代,并使未来垂直堆叠的晶体管超过1 nm节点。IBM已经证明了降至21 nm螺距的线条的金属化,从而使铜达马斯斯互连的集成能够继续进行。这些创新不仅是研究的努力;它们将变成可以大规模部署以解决实际业务问题的产品。例如,IBM Spyre已经可用,将是下一代IBM Power 11的组成部分。AIU Northpole和共包装的光学设备在加拿大Bromont的IBM设施进行了测试和硬化。IBM量子通过整合量子和经典系统来解决复杂问题,从而加速其对混合计算的愿景。今年,该公司在推进其可扩展故障量量子计算机的路线图方面取得了长足的进步。在量子开发人员会议上,IBM展示了其进度,包括从高达5,000台门的运营中获得了苍鹭量子电路的精确结果。揭幕了一种新的,改进的苍鹭芯片,拥有156吨和出色的性能,错误率下降到8x10^-4。此外,IBM在创新方面取得了重大进步,包括使用Crossbill和L-COUPLER的M耦合器与火烈鸟的开发。这些突破使量子计算机更接近可扩展性和容忍性。此外,Qiskit V1.0是作为稳定版本发布的,巩固了其作为世界上最出色的量子软件开发套件的位置。此版本提供了改进的稳定性,并为Qiskit的60万开发人员提供了更长的支持周期。此外,还编译了一个名为Benchpress的基准集合,以准确演示Qiskit的性能。在针对其他量子软件(包括TKET,BQSKIT和CIRQ)的基准测试测试中,Qiskit在性能方面出现了明确的赢家,完成了比任何其他量子SDK的测试。IBM对创新的承诺可以追溯到80年前的成立。平均而言,在移动电路时,Qiskit的速度比TKET少54%。我们的软件工具集<div> Qiskit已经超越了性能SDK,以支持运行实用程序尺度量子工作负载的整个过程。这包括编写代码,后处理结果以及两者之间的所有内容。该工具集现在涵盖执行大规模工作负载所需的开源SDK和软件中间件。Qiskit Transpiler服务,更新的Qiskit Runtime Service,QISKIT AI Code Assistan Service,Qiskit Serverless和Qiskit功能等新功能使用户能够在更高的抽象级别访问高性能的量子硬件和软件。Qiskit功能,特别是将量子计算带给更广泛的受众群体的潜力。这是一项编程服务,允许用户在导入功能目录并传递其API令牌后,在IBM量子处理器和IBM Cloud上运行工作负载。该服务应用错误抑制和缓解措施,然后返回结果。通过结合软件和硬件突破,我们制作了以量子为中心的超级计算的第一个真实演示。我们与Riken合作发表了一篇论文,将此范式定义为超级计算,可以优化跨量子计算机和高级经典计算簇的工作。在我们的实验中,我们使用了多达6,400个fugaku超级计算机的节点,以帮助IBM Heron QPU模拟分子氮和铁硫簇。我们有信心,如果我们与古典HPC社区合作,我们可以在未来两年内实现量子优势。由于以量子为中心的超级计算出现,我们设想在一些最难的计算任务中协助经典计算机(反之亦然)的量子计算机。当前的加密方法取决于计算机将大数字分为主要因素的困难,随着数字的增长,这变得越来越具有挑战性。计算机科学家认为,研究人员已经证明,一台复杂的量子计算机可以通过应用Shor的算法在几个小时内破解RSA-2048加密,这对于计算机对于能够将大于2048位的数字的计算值至关重要。为了解决这一问题,IBM Research开发了三种新的数字签名算法-ML-KEM,ML-DSA和SLH-DSA,它们已被NIST接受竞争。为了确保平稳过渡到后量子后时代,IBM量子安全团队创建了一个用于网络弹性的路线图。这涉及了解组织的加密格局,确定需要更换的领域以及分析依赖性。企业可以使用诸如IBM量子安全探险家之类的工具来发现加密文物,生成密码材料清单(CBOM)并分析相关漏洞。IBM还为几项国家级计划做出了贡献,包括日本的Rapidus项目,该计划旨在使用芯片和高级包装以及AI驱动的Fab Automation开发2 NM芯片。此外,IBM与几个国家合作,以帮助他们确保其计算未来。在瑞士,IBM与Phoenix Technologies合作,在其位置安装了端到端的云AI超级计算机。该系统能够从数十个gpus扩展到数十个GPU,并具有IBM突破,例如基于IBM存储量表的灵活的基于RDMA的网络和高性能存储系统。使用OpenShift容器平台和OpenShift AI构建了云本地AI平台,可根据需要提供对WATSONX.AI的访问。IBM设置为全球主权AI Cloud Solutions的动力,从Kvant AI开始,该解决方案旨在提供特定于行业的AI应用程序。该公司还将通过投资其Bromont设施来加强与加拿大和魁北克政府的合作伙伴关系,从而巩固北美芯片供应链的未来。此外,IBM半导体研究导致了纳米片技术和2 nm节点等突破,并且新的NSTC EUV加速器将位于Albany Nanotech综合体。IBM还通过开设其在欧洲的第一个量子数据中心并与Riken合作安装IBM量子系统两个,从而在全球扩展量子计算。该公司还将IBM系统带到韩国和法国,同时与西班牙,沙特阿拉伯和肯尼亚等政府合作开发特定语言的AI模型并监视造林工作。托马斯·沃森(Thomas Watson)认为,从制表机,尺度和打孔时钟的早期,投资研究的价值。IBM继续发现新的想法和设计工具,以满足不断变化的行业需求,从而巩固了其作为计算领域的领导者的地位。 这个开创性的研究机构致力于推动现代科学的界限并取得渐进的进步。IBM继续发现新的想法和设计工具,以满足不断变化的行业需求,从而巩固了其作为计算领域的领导者的地位。这个开创性的研究机构致力于推动现代科学的界限并取得渐进的进步。IBM研究:八十年前的科学突破的遗产,哥伦比亚大学教授华莱士·埃克特(Wallace Eckert)领导了沃森科学计算实验室IBM Research成为前身的建立。在1956年,IBM建立了一个专门的研究部门,到本世纪末,他们需要更多的空间来探索迅速发展的计算世界。我们通过在我们的思想实验室中构建创新的解决方案来启动我们的旅程,以塑造计算的未来。在这里,研究人员与来自不同背景的专业人员合作,以解决看似不可能的项目。我们的内部工具(如花岗岩模型)被用来增强我们的产品,而代理框架为Qiskit供电代理。最近的合作导致了加速的发现,回应了托马斯·沃森(Thomas Watson)80年前的开拓精神。我们应对未来80年的挑战时,下一章的创新就在未来。