最初,一级方程式赛车允许使用复杂的软件控制 PAS 系统,具有多重冗余以确保安全。然而,2002 年,国际汽联的一项削减成本的举措禁止在动力转向中使用任何电子控制装置。车队首先研究了基于电动机的解决方案,但后来又恢复了“功率密度更高”的液压技术。在这项规则改变之后,车队尝试了各种液压机械方法,但这些方法比理想的要大,而且安装起来也很有挑战性。
出生时,婴儿的头部会暂时变形,以便通过狭窄的产道。出生后,这种灵活性就不再需要了,而是需要一种刚性状态来保护敏感的大脑,因此头骨的材料性质会发生变化,将头骨闭合为刚性骨骼。同样,可变刚度组件对于实现变形机器人和仿生学也具有重要意义。[1,2] 在医学和组织工程中,可变刚度也具有根本性的重要性,尤其是在与周围微环境相互作用时。例如,可以使用柔顺水凝胶和支架来促进手术期间的插入和适应,之后移植的材料会变硬以重建受伤硬组织的功能和机械性能。[2,3]
DM 科雷亚 1,2,* , LC 费尔南德斯 1 , N. 佩雷拉 1,3 , JC 巴博萨 1,2 , JP 塞拉 1 , RS 平托 1 ,
自 1964 年 Werner Riester 和 Rudolf Dinse 创立公司以来,我们一直专注于开发、制造和销售电动执行器,以提供卓越的工程服务。凭借我们的开拓精神和对市场需求的清晰感知,我们已成长为全球技术领导者。我们的产品因其长寿命、可靠性和最高精度而受到客户的青睐。
场效应晶体管 (FET) 传感器是一种极具吸引力的电位法 (生物) 化学测量设备,因为它们具有快速响应、低输出阻抗以及在标准集成电路制造技术中实现微型化的潜力。然而,这些传感器在实际应用中的广泛采用仍然有限,主要是因为时间漂移和交叉敏感性会在测量中引入相当大的误差。在本文中,我们证明,可以通过联合使用一系列 FET 传感器(针对目标和主要干扰离子进行选择)和机器学习 (ML) 方法来纠正这种非理想情况,以便连续和在现场准确预测离子浓度。我们研究了线性回归 (LR)、支持向量回归 (SVR) 和最先进的深度神经网络 (DNN) 在实际水质评估条件下连续 90 天内收集的组合 H +、Na + 和 K + 离子敏感 FET (ISFET) 读数序列监测 pH 时的预测性能。所提出的 ML 算法是根据从商用 pH 传感器获得的参考在线测量值进行训练的。结果表明,DNN 能够提供超过一周的精确 pH 值监测,与标准的两点传感器校准方法相比,相对均方根误差降低了 73%。
• 在测量方面,开发之初讨论的测量方法(如称重传感器)与环境测试(热、振动和冲击)的限制不兼容。新的解决方案(如带有应变计的拉杆仪表)已经实施,并将在资格认证活动期间使用。这种仪表化的拉杆将以 FM 的形式出售。• 经过大量研究,机械和热裕度确保在任何情况下,Trigger 都能正常触发。• 全聚酰亚胺加热器能够在高温和高密度功率下短时间运行,而不会出现明显性能下降。当应用需要非常短时间使用时,它允许全聚酰亚胺加热器以高于 ECSS 标准中指示的功率密度使用。
通过远离阳光的茎另一侧细胞的伸长来实现。水凝胶 [2] 和液晶弹性体 [3,4] 中也可以发现类似的响应光的可逆伸长和收缩机制,尽管使用水凝胶的系统通常具有非常长的响应时间,并且仅限于在水环境中发挥作用。30 多年来,液晶弹性体 (LCE) 一直处于研究和开发的前沿,部分原因是它们具有卓越的驱动特性 [5–7],也是因为它们独特的“软弹性”(产生机械应变时没有或只有非常低的弹性阻力)。[8] LCE 的线性驱动可以达到最大 500% 的应变 [9,10] 并且是完全可逆的:取向 LCE 样品的平衡长度直接反映内部向列有序的程度。从根本上讲,任何影响聚合物中向列相序的刺激都可引发 LCE 驱动,尽管热诱导相变是最自然的现象,但当加入光吸收剂 [3,4,11] 或磁性纳米粒子时,光和磁场等其他刺激也可引发顺序变化。[12] 这些特性使 LCE 成为从软机器人 [13] 到传感器 [14] 和智能纺织品 [15] 等实际应用中的有竞争力的材料。
广泛地用于实现受到生活系统行为及其对各种物理和化学刺激的反应能力的启发,包括电荷和偶极子,压力,温度,湿度和磁场。[5-17]这些机械主动的结构通常设计为在预定义的参数范围内工作,在其外部可能无法根据需要做出响应。赋予合成折纸系统具有检测环境条件及其自己的状态模仿性质,实现反馈控制并增强其适应环境变化的能力的能力。需要机械的软传感器,以适应动作过程中的运动和变形才能有效与折纸进行整合。软执行器的标准方法已集中在基于商业电子和气动系统[18]的刚性设计上,或者是带有刺激响应材料的小规模平台。[19]前者太笨重了,无法复制生物系统中发现的无缝且温和的折叠模式,而后者缺乏传感器,因此反馈控制以积极指导其运动。实现柔软,功能性和薄折纸致动器需要在这两种方法之间进行合成,这可以通过使用电子皮(E-Skins),复合膜或水凝胶来介导。最近的工作通过证明本质上柔韧的应变[20,21]曲率,[22,23]和光学[24]传感器整合到软致动器中,从而实现了该协同作用的一些步骤。然而,这些示例集中在由没有多个折叠的单层材料制成的执行器上,因此不需要折纸时的组装过程中的运动跟踪。可以通过将磁敏感的e胶粘在软磁性执行器上,检测到各种襟翼或褶皱的位置和方向,从而检测出外部或固有或固有的(由执行器)磁场产生。专门用于磁性软执行器或磁性软机器人[1,25-29],该机器人是由带有嵌入式磁性颗粒的聚合物复合材料构建的,磁化状态的变化会极大地影响致动。[24,25,30–35]当磁性特性的这种变化是有目的的和骗局的时,它们对于允许以新的方式做出相同的结构非常有益。杂志执行器对施加磁场的响应是复合材料的磁化状态的特征,这对用于磁化的过程既敏感又敏感。
作者的完整清单:Meek,Claire;剑桥大学,代谢科学研究所; Addenbrooke医院,沃尔夫森糖尿病和内分泌部和临床生物化学。Oram,Richard A;皇家德文郡和埃克塞特医院,糖尿病研究系麦当劳,蒂莫西J;皇家德文郡和埃克塞特医院,糖尿病研究系; Denice糖尿病研究系Feig皇家德文郡和埃克塞特NHS基金会信托基金;西奈山医院 - 蒙特利尔哈特斯利,安德鲁·T;皇家德文郡和埃克塞特医院,糖尿病研究部墨菲,海伦R;东安格利亚大学,诺里奇医学院;伦敦国王学院,妇女和儿童健康系; Addenbrooke医院,沃尔夫森糖尿病和内分泌诊所Oram,Richard A;皇家德文郡和埃克塞特医院,糖尿病研究系麦当劳,蒂莫西J;皇家德文郡和埃克塞特医院,糖尿病研究系; Denice糖尿病研究系Feig皇家德文郡和埃克塞特NHS基金会信托基金;西奈山医院 - 蒙特利尔哈特斯利,安德鲁·T;皇家德文郡和埃克塞特医院,糖尿病研究部墨菲,海伦R;东安格利亚大学,诺里奇医学院;伦敦国王学院,妇女和儿童健康系; Addenbrooke医院,沃尔夫森糖尿病和内分泌诊所
摘要。触摸后的康复装置是必不可少的,因为中风攻击可能导致人体的一部分或一半。外骨骼可能是中风后患者康复的重要装置。几项研究提出了用于康复目的的外骨骼设计,以实现人类肢体疾病。这项研究旨在根据肌电或任何其他传感器回顾手部外骨骼设备的最先进。本文有望使用肌电传感器和力传感器同时设计手外骨骼设备。这是通过审查与外骨骼开发有关的几篇文章来实现的,尤其是在传感器系统,数据处理和执行器系统中。结果表明,仍然发现使用Ag电极一次性AG(AGCL)检测手指在手上的运动,因为该传感器可以减少伪影噪声。在几项研究中也发现了肌臂的使用,因为它具有无线特性,因此易于使用。在处理器方面,Arduino微控制器比其他微控制器更广泛地使用。为了激活手部外骨骼,伺服电动机被更广泛地用于启动手指关节,这比其他执行器更精确。在进一步的发展中,外骨骼系统和信息系统之间的整合将是一个预期的挑战。希望,这种外骨骼的发展可以作为康复装置应用于故障或瘫痪的患者。