美国国家标准与技术研究所正在通过一个公开的、类似竞争的过程来选择公钥加密算法。新的公钥加密标准将指定额外的数字签名、公钥加密和密钥建立算法,以增强联邦信息处理标准 (FIPS) 186-4、数字签名标准 (DSS) ,以及 NIST 特别出版物 (SP) 800-56A 修订版 3、使用离散对数密码术的成对密钥建立方案建议和 SP 800-56B 修订版 2、使用整数分解密码术的成对密钥建立建议。这些算法旨在能够在可预见的未来保护敏感信息,包括量子计算机问世之后。本报告根据公众反馈和内部审查,介绍了 NIST 后量子密码标准化过程第三轮候选算法的评估和选择过程。报告总结了 15 种第三轮候选算法,并确定了选定的标准化算法以及将在第四轮分析中继续评估的算法。将要标准化的公钥加密和密钥建立算法是 CRYSTALS–K YBER 。将要标准化的数字签名是 CRYSTALS–Dilithium、F ALCON 和 SPHINCS + 。虽然选择了多种签名算法,但 NIST 建议将 CRYSTALS–Dilithium 作为要实施的主要算法。此外,四种备用密钥建立候选算法将进入第四轮评估:BIKE、Classic McEliece、HQC 和 SIKE。这些候选算法仍在考虑未来的标准化。NIST 还将发布新的公钥数字签名算法征集提案,以扩充和多样化其签名组合。
关于学院 瓦朗加尔国立科技学院(前身为地区工程学院)成立于 1959 年。多年来,该学院已发展成为一所顶尖的高等学府,并跻身印度顶尖技术教育机构之列。学院下设 14 个院系,提供 8 个本科课程和 31 个研究生课程,此外还有博士课程。大约有 5000 名全国学生和约 500 名国际学生在校园学习。这是一个占地 250 多英亩的全住宅校园,基础设施优良。 关于部门 电气工程系是瓦朗加尔国立科技学院 (NITW) 最古老的院系之一。该系成立于 1959 年,是学院的主要院系之一,一直积极从事电气工程各个领域的教学和研究。该系拥有优秀的师资队伍,提供电气和电子工程本科(B.Tech)课程和“电力电子与驱动”、“电力系统工程”、“智能电网”、“控制与自动化”研究生(M.Tech)课程,还提供电气工程博士学位课程。该系拥有设备齐全的最先进的实验室,以扩充课程并提高研究潜力。该系拥有一支充满活力的教师队伍,他们在学术、研究和工业方面拥有丰富的经验,致力于教学过程,并积极参与前沿研发活动,拥有广泛的专业领域,例如:电力电子与驱动、电力电子在节能照明系统中的应用、DSP 控制的工业驱动、电动汽车和无线电力传输以及电能质量改进、电力系统的状态估计和实时控制、ANN 和模糊逻辑在电力系统中的应用,
1.2 特色 本课程有以下特色: (a) 本课程为香港四年制学位课程,旨在培养学生成为航空业工程师。(b) 部分科目由理大学者与业界专业人士共同教授,让学生获得航空业第一手资料。(c) 课程可安排暑期实习、技术参观及实地经验分享,以加强学生在业界的学习和工作经验。在本课程中,学生在第一年获得广泛的科学和工程知识,为他们在高年级学习航空工程相关科目打下坚实基础。在第二年,他们将获得飞机和航空系统的基本知识,并拥有飞机部件制造过程的实践经验。在第三年,学生将开始学习更高级的科目,例如飞机设计、安全、控制和推进系统。在最后一年(即正常学习模式的第四年),学生有机会集中学习所选的课程,以获得航空工程特定领域的专业知识。学生还可以自由选择不同课程中的四个选修科目,以扩充对航空工程的了解。可能的学习课程包括 (a) 航空服务工程、(b) 航空工程、(c) 飞机维修工程和 (d) 飞行员地面理论简介。工业中心 (IC) 培训旨在通过研讨会和项目培训为学生提供现代飞机设计的基本动手工程技能和实践。学生可在暑假参加实习计划,以获得真实的工作经验,并提高他们将来的竞争力。可能会为学生提供以工业为基础的最后一年项目,以提高他们解决实际问题的技能和知识。1.3 最低入学要求
美国国家标准与技术研究所正在通过一个公开的、类似竞争的过程来选择公钥加密算法。新的公钥加密标准将指定额外的数字签名、公钥加密和密钥建立算法,以增强联邦信息处理标准 (FIPS) 186-4、数字签名标准 (DSS) ,以及 NIST 特别出版物 (SP) 800-56A 修订版 3、使用离散对数密码术的成对密钥建立方案建议和 SP 800-56B 修订版 2、使用整数分解密码术的成对密钥建立建议。这些算法旨在能够在可预见的未来保护敏感信息,包括量子计算机问世之后。本报告根据公众反馈和内部审查,介绍了 NIST 后量子密码标准化过程第三轮候选算法的评估和选择过程。报告总结了 15 种第三轮候选算法,并确定了选定的标准化算法以及将在第四轮分析中继续评估的算法。将要标准化的公钥加密和密钥建立算法是 CRYSTALS–K YBER 。将要标准化的数字签名是 CRYSTALS–Dilithium、F ALCON 和 SPHINCS + 。虽然选择了多种签名算法,但 NIST 建议将 CRYSTALS–Dilithium 作为要实施的主要算法。此外,四种备用密钥建立候选算法将进入第四轮评估:BIKE、Classic McEliece、HQC 和 SIKE。这些候选算法仍在考虑未来的标准化。NIST 还将发布新的公钥数字签名算法征集提案,以扩充和多样化其签名组合。
美国国家标准与技术研究所正在通过一个公开的、类似竞争的过程来选择公钥加密算法。新的公钥加密标准将指定额外的数字签名、公钥加密和密钥建立算法,以增强联邦信息处理标准 (FIPS) 186-4、数字签名标准 (DSS) ,以及 NIST 特别出版物 (SP) 800-56A 修订版 3、使用离散对数密码术的成对密钥建立方案建议和 SP 800-56B 修订版 2、使用整数分解密码术的成对密钥建立建议。这些算法旨在能够在可预见的未来保护敏感信息,包括量子计算机问世之后。本报告根据公众反馈和内部审查,介绍了 NIST 后量子密码标准化过程第三轮候选算法的评估和选择过程。报告总结了 15 种第三轮候选算法,并确定了选定的标准化算法以及将在第四轮分析中继续评估的算法。将要标准化的公钥加密和密钥建立算法是 CRYSTALS–K YBER 。将要标准化的数字签名是 CRYSTALS–Dilithium、F ALCON 和 SPHINCS + 。虽然选择了多种签名算法,但 NIST 建议将 CRYSTALS–Dilithium 作为要实施的主要算法。此外,四种备用密钥建立候选算法将进入第四轮评估:BIKE、Classic McEliece、HQC 和 SIKE。这些候选算法仍在考虑未来的标准化。NIST 还将发布新的公钥数字签名算法征集提案,以扩充和多样化其签名组合。
美国国家标准与技术研究所正在通过一个公开的、类似竞争的过程来选择公钥加密算法。新的公钥加密标准将指定额外的数字签名、公钥加密和密钥建立算法,以增强联邦信息处理标准 (FIPS) 186-4、数字签名标准 (DSS) ,以及 NIST 特别出版物 (SP) 800-56A 修订版 3、使用离散对数密码术的成对密钥建立方案建议和 SP 800-56B 修订版 2、使用整数分解密码术的成对密钥建立建议。这些算法旨在能够在可预见的未来保护敏感信息,包括量子计算机问世之后。本报告根据公众反馈和内部审查,介绍了 NIST 后量子密码标准化流程第三轮候选算法的评估和选择过程。报告总结了 15 种第三轮候选算法,并确定了选定的标准化算法以及将在第四轮分析中继续评估的算法。将要标准化的公钥加密和密钥建立算法是 CRYSTALS–K YBER 。将要标准化的数字签名是 CRYSTALS–Dilithium、F ALCON 和 SPHINCS + 。虽然选择了多种签名算法,但 NIST 建议将 CRYSTALS–Dilithium 作为要实施的主要算法。此外,四种备用密钥建立候选算法将进入第四轮评估:BIKE、Classic McEliece、HQC 和 SIKE。这些候选算法仍在考虑未来的标准化。NIST 还将发布新的公钥数字签名算法征集提案,以扩充和多样化其签名组合。
背景和目标:机器学习框架已经展示了其在处理复杂数据结构方面的潜力,并在包括脑成像在内的许多领域取得了显著成果。然而,训练这些模型需要大量的数据。这在生物医学领域尤其具有挑战性,因为由于获取的可及性、成本和病理相关的多变性,可用的数据集有限且通常不平衡。为了克服这一挑战,可以使用生成模型来生成新数据。方法:在本研究中,提出了一个基于生成对抗网络的框架来创建多发性硬化症 (MS) 中的合成结构脑网络。该数据集包括 29 名复发缓解型和 19 名继发进展型 MS 患者。使用 T1 和扩散张量成像 (DTI) 采集来获取每个受试者的结构脑网络。对新生成的脑网络质量的评估是通过 (i) 分析其结构特性和 (ii) 研究它们对分类性能的影响来执行的。结果:我们证明了高级生成模型可以直接应用于结构脑网络。我们从数量和质量上表明,新生成的数据与真实数据相比没有显著差异。此外,使用生成的样本扩充现有数据集可提高分类性能( 퐹 1 푠푐표푟푒 81%),而基线方法( 퐹 1 푠푐표푟푒 66%)则没有。结论:当需要基于连接组的数据增强时,我们的方法为生物医学应用定义了一种新工具,为通常的基于图像的数据增强技术提供了一种有效的替代方案。
美国国家标准与技术研究所正在通过一个公开的、类似竞争的过程来选择公钥加密算法。新的公钥加密标准将指定额外的数字签名、公钥加密和密钥建立算法,以增强联邦信息处理标准 (FIPS) 186-4、数字签名标准 (DSS) ,以及 NIST 特别出版物 (SP) 800-56A 修订版 3、使用离散对数密码术的成对密钥建立方案建议和 SP 800-56B 修订版 2、使用整数分解密码术的成对密钥建立建议。这些算法旨在能够在可预见的未来保护敏感信息,包括量子计算机问世之后。本报告根据公众反馈和内部审查,介绍了 NIST 后量子密码标准化过程第三轮候选算法的评估和选择过程。报告总结了 15 种第三轮候选算法,并确定了选定的标准化算法以及将在第四轮分析中继续评估的算法。将要标准化的公钥加密和密钥建立算法是 CRYSTALS–K YBER 。将要标准化的数字签名是 CRYSTALS–Dilithium、F ALCON 和 SPHINCS + 。虽然选择了多种签名算法,但 NIST 建议将 CRYSTALS–Dilithium 作为要实施的主要算法。此外,四种备用密钥建立候选算法将进入第四轮评估:BIKE、Classic McEliece、HQC 和 SIKE。这些候选算法仍在考虑未来的标准化。NIST 还将发布新的公钥数字签名算法征集提案,以扩充和多样化其签名组合。
CRISPR/Cas 系统最初是作为基因编辑工具开发的,在核苷酸检测方面也显示出巨大的潜力。最近发表在 Molecular Cell 上的一项研究(Freije et al., 2019)开发了一种基于 Cas13a 的 CARVER(Cas13 辅助限制病毒表达和读取)来检测 RNA 病毒,例如淋巴细胞脉络丛脑膜炎、甲型流感和水泡性口炎,这为在疾病诊断中检测广泛的病毒核苷酸提供了潜在的扩展应用。细菌和古细菌利用 CRISPR/Cas(成簇的规律间隔的短回文重复序列/CRISPR 相关)系统作为适应性免疫系统来防御噬菌体感染。 Cas效应子在CRISPR RNA(crRNA)的引导下,结合并切割DNA或RNA靶标,以防御入侵的核苷酸(Horvath and Barrangou,2010;Sorek et al.,2013;Barrangou and Marafini,2014)。CRISPR/Cas系统的发现可以追溯到1987年,规则间隔的直向重复序列首次在大肠杆菌的iap基因中发现(Ishino et al.,1987)。直到2002年,间隔直向重复序列被命名为CRISPR(Jansen et al.,2002)。2012年,Jinek et al.报道称,CRISPR/Cas9 可以用单个 RNA 嵌合体特异性切割靶 DNA(Jinek 等,2012),拉开了 CRISPR/Cas9 系统用于基因组编辑的序幕。自 CRISPR/Cas9 被发现以来,CRISPR/Cas 系统备受关注,CRISPR 工具箱不断扩充。作为 DNA 靶向 CRISPR 工具箱的有力补充,CRISPR/Cas12a(以前称为 CpfI)是一种 2 类 V 型 CRISPR/Cas 效应物(Zetsche 等,2015),具有
摘要 在可持续药物开发过程中,药物-靶标相互作用的计算机预测是一个关键阶段,特别是当研究重点是利用现有药物的重新定位时。然而,开发这样的计算方法并非易事,但却非常必要,因为当前预测潜在药物-靶标相互作用的方法存在高假阳性率。在这里,我们介绍了 DTiGEMS +,一种使用图嵌入、图挖掘和基于相似性的技术预测药物-靶标相互作用的计算方法。DTiGEMS + 结合了基于相似性和基于特征的方法,并将新型药物-靶标相互作用的识别建模为异构网络中的链接预测问题。DTiGEMS + 通过使用另外两个互补图(即:药物-药物相似性、靶标-靶标相似性)扩充已知的药物-靶标相互作用图来构建异构网络。DTiGEMS + 结合了不同的计算技术来提供最终的药物靶标预测,这些技术包括图嵌入、图挖掘和机器学习。 DTiGEMS+ 在应用相似性选择程序和相似性融合算法后,将多种药物-药物相似性和靶标-靶标相似性集成到最终的异构图构造中。使用四个基准数据集,我们表明 DTiGEMS+ 与其他用于预测药物-靶标相互作用的最先进的计算机模拟方法相比,显著提高了预测性能,在所有数据集中实现了最高的平均 AUPR(0.92),与最先进方法比较中表现第二好的模型相比,错误率降低了 33.3%。关键词:药物重新定位、药物-靶标相互作用、机器学习、图嵌入、异构网络、基于相似性、相似性集成、生物信息学、化学信息学
