在病原体检测的领域中,等温扩增技术已成为常规PCR的迅速,精确和敏感的替代品。本文探讨了重组酶聚合酶扩增(RPA)和重组酶-AID扩增(RAA)的基本原理,并回顾了将CRISPR-CAS系统与RPA/RAA技术集成的当前状态。此外,本文探讨了等温扩增和CRISPR-CAS技术的融合,从而对现有的合并方法(例如Sherlock and Dentectr)进行了全面的综述和增强。我们研究了RPA/RAA与CRISPR-CAS在病原体检测中的实际应用,并强调了这种综合方法在该领域的研究和临床实施如何显着进步。本文旨在为读者提供对RPA/RAA和CRISPR-CAS技术融合的简洁理解,从而为他们的临床效用,持续的增强和这种综合方法在病原体检测中的有希望的前景提供了见解。
根据绿色化学原理生产的六肽。该成分是 Argireline ® 肽的进化,具有卓越的活性和额外的肌肉放松效果。它还可以减少所有皮肤层中与年龄相关的变化。
恒温扩增核酸检测技术因其耗时短、对扩增 设备要求低和引物探针商品化合成稳定等优势 , 在 病原快速检测技术中脱颖而出。 Piepenburg 等 [ 13 ] 参 照 T4 噬菌体 DNA 复制系统于 2006 年创建了一种新 型等温扩增技术 , 使用酶来打开双链 DNA, 该技术 称为重组酶聚合酶扩增 (Recombinase polymerase am- plification, RPA) 。随后发明的重组酶介导链置换 核酸扩增技术 (Recombinase-aid amplification, RAA) 技术原理与 RPA 类似 , 不同之处在于 RAA 的重组酶 来源于细菌或真菌 , 而 RPA 的重组酶来自 T4 噬菌 体。 2017 年 [ 14 ] 结合以上重组酶 , SHERLOCK (Specifi- chigh-sensitivity enzymatic reporter unlocking) 检测 方案问世 , 并应用于新冠病毒的检测技术开发 [ 15 ] , 该技术通过改造规律间隔成簇短回文重复序列及 其关联蛋白 (Clustered regularly interspaced short pa- lindromic repeats/CRISPR-associated proteins system, CRISPR/Cas) 系统 , 使其能够识别特定的严重急性 呼吸综合征冠状病毒 2 (Severe acute respiratory syn- drome coronavirus 2, SARS-Cov-2) 基因组片段 , 1h 就能确定检测结果 , 检测限可低至 2 amol/L 。 SHER- LOCK 技术特异和简便 , 将 SHERLOCK 与 RAA 整合 集成 , 能够凸显两者的优势 , 不仅可以实现靶标核 酸的快速扩增 ( 保留等温扩增技术的优势 ), 还增强 了检测特异性。
抽象的酵母人工染色体克隆是一种用于基因组映射研究的有吸引力的技术,因为很大的DNA片段可以很容易地传播。然而,详细的分析通常需要广泛的印迹杂交技术的应用,因为人工铬的通常仅以每个单倍体基因组的拷贝形式存在。我们已经开发了一个克隆载体和宿主菌株,通过允许人工染色体的副本数量来减轻此问题。矢量包括一个conter粒粒料,可以通过更改碳源来打开或关闭。可以通过选择异源性胸苷激酶基因的表达来实现强大的人工染色体副本的强选择性压力。使用此系统时,大小约100至600千碱基的人造染色体很容易被放大10至20倍。选择性条件并未在测试的任何克隆中引起明显的后栅格。在放大的人造染色体克隆中的丝粒重新激活,从而稳定地维持了20代拷贝数。拷贝数控制在人造染色体分析的各个方面的应用。
造血干细胞 (HSC) 是一种罕见但功能强大的细胞类型,可支持终生造血并在移植后稳定地再生整个血液和免疫系统。造血干细胞移植是治疗各种血液和免疫系统疾病的主要方法。因此,体外扩增和操作造血干细胞是提出实验血液学中的生物学问题并帮助改善临床造血干细胞移植疗法的重要方法。然而,体外扩增可移植的造血干细胞仍然具有挑战性。本综述总结了体外造血干细胞扩增技术的最新进展及其在生物学和临床问题中的应用,并讨论了该领域的当前问题。© 2023 ISEH – 血液学和干细胞学会。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)
生物的目标是偏离生物生物维护实验室基础设施的“一种尺寸适合所有尺寸”的方法,并确定并实施新的和创新的解决方案,以实现安全有效的实验室,这些解决方案可以在包括低资源环境在内的所有环境中可持续运行。
最初的PCR要求包括100至35000个碱基对的目标DNA,与靶DNA互补并与靶DNA区域结合,二价阳离子(MG 2+),缓冲溶液,脱氧核糖核苷酸,例如DATP,DATP,DCTP,DCTP,DGTP和DTTP,dttp和Prospective Bases。DNA聚合酶是从深海中发现的细菌中分离出的必需酶。因此,该酶通常被称为TAQ聚合酶。该酶的优点是它是热稳定的。也就是说,它可以承受高达95 O的温度上升。查看图8.2,了解执行聚合酶链反应的步骤。用于执行PCR的仪器被称为热环生(图8.3)。建议学习者在给定的链接
Fatih Göktepe(主要作者和通讯作者)巴尔廷大学,工程、建筑和设计学院,土木工程系 74110,巴尔廷(土耳其) fgoktepe@bartin.edu.tr 手稿代码:14062 接受/接收日期:2020 年 8 月 13 日/2019 年 10 月 11 日 DOI:10.7764/RDLC.19.2.255 摘要地震引起的地震波的振幅和频率会根据地下的物理特性而改变。进一步的修改是由于地下介质和地震波之间的土壤-结构运动学相互作用。在存在地下结构的情况下,对地面运动和地震波的地下传播的分析需要包括适当的地面输入运动参数。为了确保重要工程结构的保护,并防止地震激发下的环境破坏,需要从波传播问题的角度仔细分析振动的地下结构的动态响应。本研究的目的是使用数值工具评估在考虑隧道-土壤相互作用时放大对自由场运动(包括地下结构)的影响。采用二维有限元法作为数值模型,确定在存在隧道结构的情况下,不同频率的地震激发对表面振动的放大效应。结果表明,地下结构的存在会放大自由场和隧道上的地震振动,具体取决于外部载荷的频率和局部土壤条件。关键词:地震激发、地下结构、隧道-土壤动态相互作用、地震响应、有限元分析、隧道深度、局部土壤条件。