已经取得了显着的迈进,该领域显然是由于缺乏高质量数据集而导致的。早期数据集(如Pigraphs [39]和Prox [16])启动了探索,但受到可扩展性和数据质量的约束。MOCAP数据集[14,30]使用Vicon等复杂的设备优先考虑高质量的人类运动限制。但是,他们通常缺乏捕获多样化和沉浸式的HSI。通过RGBD视频录制的可扩展数据集提供了更广泛的实用程序,但受到人类姿势和对象跟踪质量较低的阻碍。合成数据集的出现[1,3,4,55]提供了成本效率和适应性,但无法封装完整的现实HSI频谱,尤其是在捕获动态3D触点和对象跟踪时。为了应对这些挑战,这项工作首先引入了trumans(t rack hum a um a u u u u u u u u u u u u u u a ctio n s in s cenes)数据集。Trumans成为最广泛的运动捕获HSI数据集,涵盖了15个小时以上15个小时的室内场景中的各种相互作用。它捕获了全身的人类动作和部分级别的对象动力学,重点是接触的现实主义。通过将物理环境复制到准确的虚拟模型中,可以进一步增强此数据集。外观和运动的广泛增强都应用于人类和物体,以确保相互作用的高度有限。接下来,我们设计了一个计算模型,通过将场景和动作作为条件同时采取行动来应对上述挑战。我们对杜鲁士数据集和运动合成方法进行了全面的交叉评估。特别是,我们的模型采用自回归的条件扩散,场景和动作嵌入作为征用输入,能够产生任意长度的运动。为了整合场景上下文,我们通过在本地化的基础上查询全局场景的占用来开发有效的场景感知者,这在导航杂乱的场景时表现出了3D感知的碰撞避免的强大效率。为了将框架的动作标签合并为条件,我们将时间特征集成到动作片段中,使模型在粘附在给定的动作标签时随时接受指令。场景和动作条件的这种双重整合增强了我们方法的可控性,为在3D场景中合成合理的长期运动提供了细微的界面。将trumans与现有人物进行比较,我们证明了杜鲁士人明显提高了最先进的方法的性能。此外,我们的方法在定性和定量上进行了评估,超过了现有的运动综合方法,其质量和零击性能力在看不见的3D场景上,非常接近原始运动捕获数据的质量。除了运动合成之外,杜鲁士人已经针对人类的姿势和接触估计任务进行了基准测试,证明了其多功能性并将其确立为一系列未来的研究努力的宝贵资产。
显着性阈值。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 S3标记转录本,基因编码和新颖性分类。。。。。。。。。。。。。。。5 S4研究中考虑的各种转录组分析的概述。 输入和输出注释均为每个注释,管道名称以及所处理的转录组数据。 ISOSEQ注释是在基因开关项目的上下文中生成的,并从ENA检索(配件ERZ15610616和ERZ15610622)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。5 S4研究中考虑的各种转录组分析的概述。输入和输出注释均为每个注释,管道名称以及所处理的转录组数据。ISOSEQ注释是在基因开关项目的上下文中生成的,并从ENA检索(配件ERZ15610616和ERZ15610622)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 S5雷尼斯鸡肉图集基因的来源每个基因生物型。。。。。。。。。。。。。。。。。。7 s6 tau值的eNembl注释基因的分布。。。。。。。。。。。。。。8
参考文献................................................................................................................................ 34
将可再生能源集成到现代智能电网中,由于能源产生的可变性和不可预测性,提出了重大挑战。对可再生能源输出的准确实时预测对于确保网格稳定性,优化能量分布并最大程度地减少了能量浪费至关重要。本研究探讨了针对智能电网中实时可再生能源预测的可扩展监督学习算法的开发和应用。
为生物搜索中使用的显微镜图像仍然是一个重要的挑战,尤其是对于跨越数百万图像的大规模实验。这项工作探讨了经过越来越较大的模型骨架和显微镜数据集训练时,弱监督的clasifirers和自我监管的蒙版自动编码器(MAE)的缩放属性。我们的结果表明,基于VIT的MAE在一系列任务上的表现优于弱监督的分类器,在召回从公共数据库中策划的已知生物学关系时,相对实现的相对效果高达11.5%。此外,我们开发了一种新的通道敏捷的MAE架构(CA-MAE),该体系结构允许在推理时输入不同数字和通道的图像。我们证明,在不同的实验条件下,在不同的实验条件下,CA-MAE通过推断和评估在显微镜图像数据集(Jump-CP)上有效地概括了,与我们的训练数据(RPI-93M)相比,通道结构不同。我们的发现促使人们继续研究对显微镜数据进行自我监督学习,以创建强大的细胞生物学基础模型,这些模型有可能促进药物发现及其他方面的进步。与此工作发布的相关代码和选择模型可以在以下网址找到:https://github.com/ recursionpharma/maes_microscopy。
基于状态的签名(HBS)方案的标准化始于2018年和2019年的IETF RFC的出版物IETF RFCS的扩展Merkle签名方案(XMSS)和基于Leighton-Micali Hash的签名(LMS)的出版物[8],[8],[11]。2020年,美国国家标准技术研究所(NIST)发表了进一步推荐的参数[7]。德国联邦信息安全办公室(BSI)在自己的出版物中指定了这两种算法[5]。自从其标准化以来,已将状态HBS算法部署在多种产品中,从嵌入式设备到服务器[3],[6],[12]。由于其固有的状态,可以使用密钥对创建的签名数量有限,这也限制了应用程序的范围。实际上,它们最适合验证很少更改的数据的完整性和真实性,例如嵌入式设备的固件。然后进行验证过程,然后在安全的启动或固件更新过程中进行。在过去的工作中,研究界已经调查了此用例[9],[10],[15],[17]的硬件和软件优化,并且供应商带来了前进的产品[12]。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
empagliflozin和盐酸二甲双胍释放片剂被指示为饮食和运动的辅助手段,以改善2型糖尿病成年人的血糖控制,当时用雌激素和二甲双胍盐酸盐治疗时,适用于2型糖尿病。empagliflozin被指出可降低2型糖尿病和既定心血管疾病的成人心血管死亡的风险(请参阅第5.1节)。然而,尚未确定雌性二释放片的雌激素和盐酸二甲双胍对降低2型糖尿病和心血管疾病成人心血管死亡风险的有效性。不建议使用1型糖尿病患者或治疗糖尿病性酮症酸中毒的患者使用empagliflozin和盐酸二甲双胍扩展释放片的限制(请参阅第4.4节)。4.2。posology and Administion方法:建议剂量•对于先前未用empagliflozin治疗的体积耗竭的患者,在启动empagliflozin和盐酸二甲双胍扩展释放片之前,请更正这种情况(请参阅第4.4节)。•基于患者的当前方案的empagliflozin和二甲双胍盐酸盐的起始剂量个性化:
