尚未确定抽象背景的脑结构改变及其髓磷脂少突胶质细胞糖蛋白抗体疾病(MOGAD)的临床意义。方法我们招募了35个摩根菌,38个水通道蛋白4抗体阳性神经瘤谱谱疾病(AQP4+ NMOSD),37个多发性硬化症(MS)和60个健康对照(HC),他们接受了来自两个中心的多层化脑MRI。脑损伤,整个大脑实质的体积,皮质和皮质下灰质(GM),脑干,小脑和脑白质(WM)(WM)以及扩散措施(分数各向异性,FA和平均扩散性,MD,MD)。通过部分相关评估MRI测量与临床变量之间的关联。逻辑回归以区分Mogad与AQP4+ NMOSD和MS。导致Mogad的结果,19名(54%)患者患有MRI病变,皮质/折(68%)是最常见的位置。mogad和MS比HC显示出较低的皮质和皮质下GM体积,而AQP4+ NMOSD仅显示出皮质GM的体积减少。MS表现出比Mogad和HC较低的小脑体积,FA较低的MD。皮层下GM体积与摩加德中的残疾状态量表呈负相关(r = -0.51; p = 0.004)。MRI和临床措施的组合可以分别与AQP4+ NMOSD和MOGAD与MS相比,可以达到85%和93%的精度。结论摩加德表现出没有严重WM稀疏的皮质和皮质下萎缩。皮层下GM的体积与临床障碍以及MRI和临床措施的组合相关,可以将Mogad与AQP4+ NMOSD和MS分开。
由丹麦 Statens Serum Institut Administration 生产,仅供皮内注射使用。一岁以下儿童剂量:0.05 毫升重组疫苗,其他儿童剂量 0.1 毫升。每次注射均使用无菌注射器和无菌细短针头(25 G 或 26 G x 10 毫米)。不应使用消毒剂清洁皮肤。不应使用喷射注射器。应缓慢注射到皮肤上层。注射太深会增加脓肿形成的风险。疫苗应避光保存。免疫期结束时(最长 4 小时)剩余的任何悬浮疫苗都应丢弃。在接种 BCG 之前通常不进行结核菌素皮肤测试,但进行测试时,发现反应呈阳性的人需要接种疫苗。经常用于接种疫苗的部位是三角肌远端插入处(上臂约一半的位置)。免疫接种计划 所有有早期感染该疾病风险的婴儿都应常规接种 BCG。为获得最大程度的保护,应在出生后尽快接种此疫苗。它可以与 DPT、DT、TT、麻疹和脊髓灰质炎疫苗(OPV 和 IPV)同时接种。 副作用 接种 BCG 后出现局部反应是正常现象。注射部位会出现小而柔软的红色肿胀,逐渐在 2-4 周内变为小水疱,然后变成溃疡。这种反应通常会在 2 到 5 个月内消退,并且几乎所有儿童都会留下直径为 2-10 毫米的浅表疤痕。罕见的是,结节可能会持续存在并溃烂。偶尔,腋窝淋巴结可能会在免疫接种后的 2-4 个月内出现肿大。不慎皮下注射会形成脓肿,并可能导致难看的回缩疤痕。注意事项 怀孕期间、患有急性或慢性疾病(尤其是病毒感染)或患有严重的扩散性皮肤病时不建议接种 BCG 疫苗。
锂离子电池(LIB)已成为绿色经济过渡的重要技术,因为它们被广泛用于便携式电子,电动汽车和可再生能源系统中。固体电解质中相(SEI)是LIB的正确操作,性能和安全性的关键组成部分。SEI源于阳极 - 电解质界面的最初热量稳定性,所得的电解质还原产物通过形成电化学缓冲窗口稳定界面。本文旨在使第一个(但很重要)步骤,以增强广泛使用的反应力场(RAEXFF)的参数化,以确保对LIBS中SEI成分的精确分子动力学(MD)模拟。为此,我们专注于氟化锂(LIF),这是一种非常感兴趣的无机盐,这是由于其在钝化层中的有益特性。该协议在很大程度上依赖于各种python库,该库旨在与原子模拟一起使用,允许对所有重新聚体步骤进行强有力的自动化。所提出的配置集和所得数据集,允许新的Reaxff恢复无机盐的固体性质,并改善MD模拟中的质量传输属性预测。优化的REAXFF通过准确调节固体晶格中锂的扩散性,从而超过了先前可用的力场,从而在室温下预测的两阶提高了两阶数字。然而,我们对模拟的全面研究表明,Reaxff对训练集的敏感性很强,从而使其能够插入势能表面具有挑战性。因此,可以通过利用提出的互动重新聚体化协议来构建数据集,从而有效地利用RAEXFF的当前表述来建模特定且定义明确的现象。总体而言,这项工作代表了精确的反应性MD模拟迈克斯的重要第一步,阐明了Reaxff力场参数化的挑战和局限性。所证明的局限性强调了通过我们的交互式重新聚集协议开发更通用和先进的力场来提高仿真的潜力,从而实现了将来更准确,更全面的MD模拟。
偏头痛是一种神经系统疾病,直接影响全球超过 10 亿人 (1)。根据先兆症状是否完全可逆,偏头痛分为有先兆偏头痛 (MwA) 或无先兆偏头痛 (MwoA) (2)。根据头痛发作频率,偏头痛可分为发作性偏头痛和慢性偏头痛 (3,4)。在发作性偏头痛和慢性偏头痛的定义中,满足 MwoA 和/或 MwA 的诊断标准仍然是优先事项 (5)。约 30% 的偏头痛患者在头痛期 (称为前驱期) 之前会出现多种先兆症状,包括视觉、感觉、言语和/或语言、运动、脑干和视网膜症状 (2)。患有 MwA 的患者比患有 MwoA 的患者发生缺血性中风和心血管疾病的风险更高 (6,7)。因此,针对先兆的特异性治疗可能有助于降低先兆相关血管事件的风险。无论是为了终止头痛发作还是为了防止下一次头痛发作,偏头痛先兆亚型的划分都应基于对疾病机制的理解(8)。皮质扩散性抑制 (CSD) 代表了偏头痛先兆的主要理论。CSD 的特征是去极化神经元和神经胶质细胞的增殖,正常离子梯度的破坏会导致神经系统症状(9)。有人认为 CSD 可能会激活和敏化三叉神经血管通路,而三叉神经血管通路在介导偏头痛发作中起关键作用(5,9)。然而,也有人认为 CSD 可以存在于偏头痛患者中,但处于静默状态,导致没有先兆表现(10)。根据先兆症状将偏头痛患者分为 MwA 和 MwoA 可能值得怀疑。因此,除了先兆症状表现之外,我们仍然需要其他确凿的证据来对偏头痛进行亚型划分,以及进一步了解偏头痛先兆的异质性及其潜在机制。据报道,神经影像学得出的脑结构连接 (SC) 和功能连接 (FC) 改变可提供对偏头痛病理生理学的实质性认识,并可能识别潜在的 MwA 判别特征 (11-18)。偏头痛患者的脑连接变异被解释为与 CSD 和三叉神经血管通路理论有关,这些理论被广泛认为是偏头痛的可能病理生理机制 (13,19-21)。与 MwoA 相比,MwA 检测到了脑 FC 增加和过度兴奋,这意味着更高的
图1亚素纤维样组件的分辨率以及随后对相关的颜色编码方向分布函数(ODF)的估计。(a)R 2 -d分布,用于包含CSF和两个交叉WM种群的体素。5D P(r 2,d)据报道为R 2的3D对数散射图D,各向同性扩散性D ISO和轴向 - 径向 - 径向扩散率D K / D d r,其圆面积与通用r 2- d分量的重量成比例。颜色编码定义为:[r,g,b] = [cosφsinθ,sin ϕsinθ,cosθ] j d k -d⊥ /max /max(d,d,d,d,d,d,d,d,d,d,d,d,d,d,),其中(θ,ϕ)给出了每个轴对称d的方向。r 2 -d空间分为三个粗垃圾箱,称为“大”(蓝色体积),“薄”(红色体积)和“厚”(绿色体积)。落入“薄”箱中的成分被单打并解释为纤维。(b)每箱信号贡献的空间分布。中间地图显示了“大”(蓝色),“薄”(红色)和“厚”(绿色)垃圾箱中的分数种群,作为颜色编码的复合图像。最右图的重点是来自“薄”子集中的组件的信号贡献,f薄,(1- f thin)的补充给出了来自所有不用于ODF计算的所有组件的信号分数。交叉位置位置的体素,其分布在面板(a)中显示。(c)计算颜色编码的ODF的方案。r 2颜色的圆圈表示来自面板中信号的体素溶液的“薄”组件(b)。圆面积与W成正比,而[x,y,z]圆坐标被定义为[cos ϕsinθ,sin ϕsinθ,cosθ](左)或[cos ϕsinθ,sin ϕsinθ,cos cos cos ϕ] w(中和右)。在左图中,离散的r 2 -d组件显示在以1,000点(θ,ϕ)网格表示的单位球体上。首先通过公式(6)将P(r 2,d)组件的权重映射到网格,从而形成一个ODF字形,其半径沿r 2 -d概率密度沿给定(θ,ϕ)方向(中间)。按照ODF估计,方程(9)用于为每个网格点分配r 2,d ISO或dδ的平均值,并定义颜色ODF glyph(右)
偏头痛影响着全世界超过 10% 的成年人口,是世界上最严重的致残疾病之一 [1]。此外,偏头痛还会产生巨大的经济和社会影响:它会影响患者的生活质量并损害工作、社交活动和家庭生活 [2-4]。尽管偏头痛的性质和机制复杂且尚未完全了解,但潜在机制包括血管痉挛、血管内皮相关的高凝状态以及与皮质扩散性抑制相关的血管改变 [5,6]。偏头痛被认为是一种系统性血管病,与缺血性心脏病、中风和其他心血管疾病有关 [6]。青光眼也是一种多因素疾病,以进行性视神经病变和明显的视野缺损为特征 [7,8]。虽然眼压已被确定为青光眼发展的最重要风险因素,但其他风险因素也已被发现 [9,10]。已知女性 [ 11 ]、高龄 [ 8 , 12 , 13 ]、吸烟 [ 14 , 15 ]、饮酒 [ 14 , 16 ]、运动不足 [ 14 , 17 ]、较低 BMI [ 14 , 18 – 20 ] 和 CKD [ 21 ] 会增加患青光眼的风险。高血压和糖尿病等全身血管因素以及眼部血管因素(如眼血流和眼灌注压)均被认定为风险因素,强调了血管机制在其病理生理学中的作用 [ 9 , 10 , 22 ]。这种关联在正常眼压性青光眼 (NTG) 患者中似乎更为明显 [ 23 ],NTG 是韩国最常见的青光眼类型。韩国 Namil 流行病学研究显示,韩国 POAG 患者中 NTG 的比例为 77% [24]。因此,我们将 NTG 患者纳入本研究的对象人群,以更好地代表韩国的流行病学状况。考虑到这种常见的病因,之前已经研究过偏头痛与原发性开角型青光眼 (POAG) 之间的潜在关联,但结果尚无定论。蓝山眼科研究表明,在 70-79 岁人群中,偏头痛与 POAG 之间存在正相关 [25]。相反,比弗坝眼科研究发现,没有证据表明开角型青光眼与偏头痛之间存在关联 [26]。在一项研究偏头痛与青光眼之间关联的荟萃分析中,病例对照设计研究发现了显著的关联,但在队列设计研究中并未发现,作者得出结论,这种关联仍然存在争议 [27]。此外,目前还没有研究根据偏头痛的严重程度探讨青光眼的风险。因此,本研究使用全国纵向队列数据,在 9 年的随访期内调查了偏头痛与 POAG 发病风险增加之间的关联。我们还检查了这种潜在关联是否与偏头痛的慢性程度和严重程度成正比。
标题:黑色素瘤的早期诊断策略 机构:HAS, High Authority for Health, 2 avenue du Stade de France, 93218 Saint-Denis La Plaine Cédex, France;电话:+33 01 55 93 70 00,传真:+33 01 55 93 74 00,(www.hassante.fr) 目标:评估为改善黑色素瘤早期诊断而采取的行动:危险人群的定义,培训医生,优化从主治医生到皮肤科医生对法国卫生系统的求助。结果 流行病学数据:根据欧洲黑色素瘤研究估计,1995 年法国年年龄标准化患病率为每 10 万人 30.8 例(欧洲最低之一)。2000 年事故病例数估计为 7,200 起,死亡人数为 1,364 人自然史和病理生理学:黑色素瘤是从头出现的(70-80% 的病例)或出现在预先存在的痣上。描述了四种主要的解剖临床形式:浅表扩散性黑色素瘤(SSM,最常见的形式)、结节性黑色素瘤、迪布勒伊黑色素瘤和肢端雀斑性黑色素瘤。相对风险乘以 2 或以上的危险因素为:I 型皮肤光型、白皙皮肤、红色或金色头发、黑色素细胞病变数量 > 40、非典型痣数量 ≥ 2、直径为 1 的先天性痣> 20厘米,个人或家族黑色素瘤史,晒伤史。诊断方法:诊断性临床检查采用两种视觉分析方法(ABCDE规则,格拉斯哥组7点修订表)和一种视觉认知方法。研究表明,经验和培训可以提高从业者的诊断能力。皮肤镜检查可以区分色素性黑素细胞病变和非黑素细胞病变。对于非典型痣,它不能提供足够的诊断确定性来避免控制性切除。有必要进行研究来证实皮肤镜检查在当前实践中的性能。解剖病理学检查可以确认或否定临床诊断,并为临床医生提供重要的预后因素(Breslow 指数)。治疗:手术切除是非转移性黑色素瘤的唯一治疗方法。早期诊断的相关性:文献分析表明,有充分的理由鼓励黑色素瘤的早期诊断。分两个阶段完成:完全切除黑色素瘤,然后进行解剖病理学检查,从而可以确定 Breslow 指数以及是否存在溃疡;手术修正,其切除边缘的尺寸基于布雷斯洛指数的值,并且根据法国的建议在 1 到 3 厘米之间。鼓励早期诊断的活动似乎产生了积极影响(检测到的黑色素瘤数量增加,切除的黑色素瘤厚度减少),尽管其效果在时间上是有限的。SSM黑色素瘤表皮内水平期持续数月,早期诊断是可能的。Breslow 指数与治疗后生存率呈负相关。
遥感的单元I基本原理:遥感的定义:遥感原理,遥感历史。电磁辐射,辐射定律,EM光谱。EMR的相互作用:与大气,大气窗,成像光谱法,与地球相互作用。各种土地覆盖特征的光谱标志。单元-II平台:平台类型。卫星轨道,开普勒定律,卫星特征,地球观测研究的卫星和行星任务。 传感器:传感器的类型和分类,成像模式,光传感器的特征,传感器分辨率 - 光谱,辐射和时间,检测器的特征。 单元III数据接收,处理和图像解释。 地面站,数据生成,数据处理和更正。 错误和校正:辐射,几何和大气。 地面调查以支持遥感。 培训集,准确性评估,测试站点。 地面真相工具和光谱签名,频谱反射率和RS数据植被源的光谱特征:全球和印度数据产品。 视觉图像解释:视觉解释的视觉解释元素的基本原理,视觉解释的技术,解释键单元IV摄影测量法:航空摄影系统的基本原理:历史发展 - 分类 - 垂直照片的几何形状 - 规模 - 浮雕 - 浮雕流离失所 - 倾斜度和倾斜的照片和倾斜的照片,飞行计划。 导热率。 IR图像的特征。 教科书:1。卫星轨道,开普勒定律,卫星特征,地球观测研究的卫星和行星任务。传感器:传感器的类型和分类,成像模式,光传感器的特征,传感器分辨率 - 光谱,辐射和时间,检测器的特征。单元III数据接收,处理和图像解释。地面站,数据生成,数据处理和更正。错误和校正:辐射,几何和大气。地面调查以支持遥感。培训集,准确性评估,测试站点。地面真相工具和光谱签名,频谱反射率和RS数据植被源的光谱特征:全球和印度数据产品。视觉图像解释:视觉解释的视觉解释元素的基本原理,视觉解释的技术,解释键单元IV摄影测量法:航空摄影系统的基本原理:历史发展 - 分类 - 垂直照片的几何形状 - 规模 - 浮雕 - 浮雕流离失所 - 倾斜度和倾斜的照片和倾斜的照片,飞行计划。导热率。IR图像的特征。 教科书:1。IR图像的特征。教科书:1。立体镜:立体镜-Parallax方程 - 视差测量 - 高度的视差杆测量和斜率 - 立体绘图工具的测定。分析和数字摄影测量法:空中照片的方向间接,相对和绝对方向的概念,带状三角剖分,独立模型的阻滞调节(BAIM),特殊情况(切除,交叉点和立体声配件),空中式 - 空中三角形,三角构造,块调节,块调节,矫形器,矫形器,摩擦。单元V热成像:简介 - 动力学和辐射温度,材料的热性能,发射率,辐射温度。热容量,热惯性,明显的热惯性,热扩散性。IR - 辐射仪。天气对图像的影响。i)云,ii)表面风,iii)烟羽的穿透。热图像的解释。微波遥感和激光雷达:简介 - 电磁频谱,机载和空间传播雷达系统基础仪器。系统参数 - 波长,极化,分辨率,雷达几何形状。目标参数 - 背部散射,点目标,体积散射,穿透,反射,bragg共振,跨侧面变化。斑点,辐射校准。微波传感器和图像特征,微波图像解释。LIDAR简介。高光谱遥感。Floyd,F。Sabins,Jr:遥感原理和解释,Waveland Pr Inc,2020 2。Lillesand and Kiefer:遥感和图像解释,John Wiley,2015年。3。4。遥感卷的手册。i&ii,第2版,美国摄影测量学会。Mikhail,E.M.,Bethel,J.S.,McGlone,J.C。(2001)。 现代摄影测量简介。 印度:威利。Mikhail,E.M.,Bethel,J.S.,McGlone,J.C。(2001)。现代摄影测量简介。印度:威利。
扩散MRI(DMRI)是一种强大的方法,通常用于研究大脑神经途径的微观结构和几何形状。它测量了活大脑中水扩散的特征1,2。由于使用DMRI检测到的扩散fro纤维沿着大脑的神经途径限制了水的扩散,因此可以重建大脑主要纤维捆的3D几何形状。在退化性疾病中发生的病理过程,例如神经元和髓磷脂的丧失以及炎症,会影响组织扩散特性,以改变组织微结构和途径几何形状。因此,DMRI对标准解剖学MRI无法检测到的病理过程敏感。各向异性和扩散性测量是表征白质(WM)微结构特性的最广泛使用的措施。这些扩散指标已在退化,开发和精神病疾病中进行了研究3。随着许多类型的分子病理学影响DMRI信号,包括大脑中的淀粉样蛋白和Tau蛋白的积累,大量文献集中在绘制WM异常,这些疾病在神经退行性疾病的发展中产生,例如阿尔茨海默氏病(Alzheimer's Panties)等神经退行性疾病(Alzheimer's Diseation(Alzheimer)4-6,4-6,4-6,Parkinson's Parkinson's Parkinson's Parkinson's Disen和其他Dementias。Thomopoulos等。5检查了四个标准DTI指标,以及它们与痴呆症的严重程度如何在730名患者中作为阿尔茨海默氏病神经成像倡议(ADNI)的一部分进行了扫描。一项后续研究6在皮质灰质中检查了DMRI指标。Schilling等。他们发现,使用临床痴呆评级(CDR)等级评估平均扩散率(MD)与年龄和痴呆症的严重程度有关。他们发现皮质DMRI指标介导了AD的脑脊液(CSF)标记与延迟逻辑记忆性能之间的关系,这通常在早期AD中受到损害。较低的CSFAβ142和较高的PTAU181与皮质DMRI测量相关,反映了限制扩散和更大的扩散率。 AD病理学与扩散指标之间的这种明显联系已经增强了对使用DMRI研究AD的兴趣。即使这样,标准分析方法通常会将微结构指数降低到相对较大的感兴趣区域的汇总。这些局限性刺激了以较小的解剖量表为8,9的疾病对疾病对脑微观结构的影响。dTI的指标,例如分数各向异性(FA),径向扩散率(RD)和轴向扩散率(AXD)易受纤维交叉点的敏感性 - 单个voxel 11和任何个人数字中的多填充群体的存在所影响。虽然已经提出了基于体素的基于氧化的12和横向测量法方法来进一步改善受试者间的比对并有助于解决交叉纤维,但仍在体素水平上计算了许多微观结构措施。此外,当前的术语方法通常使用单变量方法分别计算每个捆绑包的组统计信息,而无需考虑大脑中相交纤维的复杂模式。拖拉术数据也可用于研究WM束的宏观结构或“形状”特性。13个计算的捆绑束指标与大脑WM的年龄相关的宏观结构变化的异质模式在大脑WM中的异质模式相比,与更均匀的微结构变化模式相比。最近的一项研究14发现,使用基于氧化的分析指标,AD的早期与TAU相关的WM变化是宏观的。据我们所知,没有任何工作研究WM微结构和宏观结构如何在神经退行性条件下共同改变了使用Tractometry方法等神经退行性条件,我们在当前的研究中解决了这一问题。在这项研究中,我们提出了宏观结构的规范术(MINT),以共同模拟微观结构的测量和纤维束几何形状的同时变化,并使用一种称为变异自动装编码器(VAE)的深度学习方法。当用作规范模型时,VAE可以编码健康对照中扩散指标的正常变异性的解剖模式。这个多元模型集成了多个互补的微观结构特征,并说明了不同DMRI指标之间的统计协方差以及与空间相关性。我们将薄荷衍生的微型与DTI的传统单变量措施进行了比较,并研究了在大型多站点样本中,在轻度认知障碍(MCI)和痴呆症中WM异常的特征模式。我们还研究了WM异常与痴呆症严重程度的临床指标有关。由于有兴趣确定用于检测和跟踪痴呆症的最佳微结构指标,因此我们还通过评估其对痴呆症的敏感性来对DTI指标进行排名。在痴呆症和MCI中可视化WM微结构异常之后,在两个不同的祖先和人口统计组中,我们研究了它们与整体裂纹几何形状的关系,并指出可以通过微观结构和形状的联合统计模型来解决的解释的歧义。