。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2025年3月2日发布。 https://doi.org/10.1101/2025.02.27.640020 doi:Biorxiv Preprint
出于多种原因,例如数据收集中的人错误或隐私注意事项,不完整的表格数据集在许多应用中无处不在。 人们会期望这样一种自然解决方案是利用强大的生成模型,例如扩散模型,这些模型在图像和连续域中表现出巨大的潜力。 但是,香草扩散模型通常对初始化的噪声表现出敏感性。 这与表格域固有的自然偏差有关,对扩散模型构成了挑战,从而影响了这些模型的鲁棒性,以进行数据插补。 在这项工作中,我们提出了一个高级扩散模型,名为S Elf Subsuped Impation d iffusion M Odel(简短的SIMPDM),专门针对表格数据插图任务量身定制。 为了减轻对噪声的敏感性,我们引入了一种自我监督的对准机制,旨在使模型正常,以确保同意和稳定的插定预测。 此外,我们在SIMPDM中引入了一个精心设计的状态依赖性数据增强策略,从而在处理有限的数据时增强了扩散模型的鲁棒性。 广泛的实验表明,在各种情况下,SIMPDM匹配或优于最先进的插补方法。不完整的表格数据集在许多应用中无处不在。人们会期望这样一种自然解决方案是利用强大的生成模型,例如扩散模型,这些模型在图像和连续域中表现出巨大的潜力。但是,香草扩散模型通常对初始化的噪声表现出敏感性。这与表格域固有的自然偏差有关,对扩散模型构成了挑战,从而影响了这些模型的鲁棒性,以进行数据插补。在这项工作中,我们提出了一个高级扩散模型,名为S Elf Subsuped Impation d iffusion M Odel(简短的SIMPDM),专门针对表格数据插图任务量身定制。为了减轻对噪声的敏感性,我们引入了一种自我监督的对准机制,旨在使模型正常,以确保同意和稳定的插定预测。此外,我们在SIMPDM中引入了一个精心设计的状态依赖性数据增强策略,从而在处理有限的数据时增强了扩散模型的鲁棒性。广泛的实验表明,在各种情况下,SIMPDM匹配或优于最先进的插补方法。
(1)问题1:复杂组合中缺少特征(例如,左侧的字符x,使用工具y,右侧的字符z盯着x),尤其是当这些功能在训练集中从未出现在同一图像中时。部分解决方案,例如使用图像来调节新图像生成。但是,LDM不能轻易地“理解”图像足以将其用作起点。例如,一些用户提到:“我注意到肖像画,很多时候,人们出现了看起来不像图片的东西”。(2)第2期:由于培训集中的异常统计数据而引起的偏见:当一个人仅从听众面前公开知道一个人(例如,在培训数据集中,经常受到新闻工作者采访的人)时,很难获得自己做其他事情的图像。或,对于经常在圣经生物旁边描绘的著名歌手,用户报告说,牛和魔鬼之间的混合物。其他用户还报告未能复制一些模因,例如“为什么我不能握住所有这些柠檬”。但是,这种偏见的最著名的例子涉及在河里游泳的萨尔蒙人的要求,因为训练套装中有太多的鲑鱼食品图像,导致鲑鱼片在河里“游泳”,包括间歇泉,就像是鲸鱼一样,或者是熊试图抓住它们。(3)第3期:需要许多重新运行,要么是因为本地诉讼(例如,四臂的人,三眼的人,或者手指过多的人),要么是因为大规模错误(例如,不同角色的不良位置)。
在对风味模型的常规分析中,参数的搜索空间通常仅限于一定范围,以在现实的计算时间内优化理论的参数。在本演讲中,我们提出了一种利用扩散模型的分析方法,该模型是一种生成人工智能。与常规方法相比,可以独立于模型的具体细节应用此策略。通过具体的示例,我们将根据基于反问题方法从鸟类的视图中评估风味模型的预测,在该方法中,机器生成了复制实验值的各种参数候选。
此处使用的目标函数是根据(相当流行的)PPO算法建模的。该算法反过来是一种策略梯度方法,并且是由信任区域策略优化(TRPO)的目标函数所激发的。,但是目标函数背后的(超高级别)直觉如下:1。对奖励的期望表明,在RL训练的模型πRL的样品上,我们希望该样品πrl的概率高时,当奖励rθ高,否则否则为低。2。beta术语的期望表明我们不希望RL训练的模型概率πrl到
摘要 - 基于分数的扩散模型具有显着的生成深度学习,用于图像处理。调查条件模型也已应用于CT重建等反问题。但是,常规方法(最终以白噪声)需要大量的反向过程更新步骤和分数功能评估。为了解决这一局限性,我们提出了一个基于分数扩散模型的替代前进过程,该过程与低剂量CT重建的噪声特性一致,而不是收敛到白噪声。这种方法大大减少了所需的得分功能评估的数量,提高效率并维持放射科医生熟悉的噪声纹理,我们的方法不仅可以加速生成过程,而且还保留了CT噪声相关性,这是临床医生经常批评的深度学习重建的关键方面。在这项工作中,我们严格地为此目的定义了基质控制的随机过程,并通过计算实验对其进行验证。使用来自癌症基因组肝肝肝癌(TCGA-LIHC)的数据集,我们模拟了低剂量CT测量结果并训练我们的模型,将其与基线标量扩散过程和条件扩散模型进行了比较。我们的结果证明了我们的伪内扩散模型的优越性,并在质地上产生高质量重建的能力,这些重建在质地上熟悉的医学专业人员的得分函数评估较少。这一进步为医学成像中更有效和临床上的扩散模型铺平了道路,在需要快速重建或较低辐射暴露的情况下尤其有益。
自回旋模型(武器)被广泛地成为大型语言模型(LLMS)的基石。我们通过介绍LLADA挑战了这一概念,这是一种扩散模型,该模型在训练和监督的细调(SFT)范式下从头开始训练。llada通过向前数据掩盖过程和反向过程进行分散模型,该过程由香草变压器参数列出以预测掩盖的令牌。通过操作可能性结合的可能性,它为概率引发提供了一种限制的生成方法。在广泛的基准测试中,Llada表现出强大的可伸缩性,表现优于我们的自我建造的手臂基线。明显地,LLADA 8B具有强大的LLM,例如LLAMA3 8B在秘密学习中,并且在SFT之后,在诸如多转变型号之类的案例研究中表现出令人印象深刻的跟随能力。此外,Llada解决了诅咒,在逆转诗的完成任务中超过了GPT-4O。我们的发现将扩散模型建立为武器的可行且有前途的替代方案,挑战了上面讨论的关键LLM功能固有地与武器相关的假设。项目页面和代码:https://ml-gsai.github.io/llada-demo/。
Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)