可以通过一种新型的“增材制造 - 压缩成型”技术来实现用短碳纤维增强的高性能热塑性复合材料。这种组合的优势是两倍:添加剂制造中的受控纤维取向,通过压缩成型含量较少。在这项研究中,已经开发了一个计算流体动力学模型,以预测纤维增强的热塑性挤出和随后的压缩成型过程中印刷层的行为。使用简单的二次闭合模型对纤维方向进行建模。使用旋转扩散系数包括纤维之间的相互作用,该系数在浓缩方案中变得显着。最后,第二等级方向张量与动量方程作为应力项的各向异性部分。研究了印刷层中不同纤维取向的影响,以确定随后经历压缩成型的链中的有利印刷场景。开发的数值模型可以设计具有可调机械性能的高性能复合材料。
摘要。我们提出了可扩展的插值变压器(SIT),这是建立在扩散变压器(DIT)骨架上的生成模型家族。与标准扩散模型更灵活地连接两个分歧的室内框架使得对各种设计选择的模块化进行了模块化研究,从而影响了基于动态传输的生成模型:在离散或连续的时间内学习,目标函数,interpolant,interpolant,interpolant连接分布和确定性或确定性或确定性或结构性的样本。通过使用完全相同的模型结构,参数数量和gflops,仔细地引入上述成分,SIT在条件成像网256×256和512×512基准上均匀地超过DIT。通过调查各种扩散系数,可以与学习分开调整,SIT分别达到50k的得分为2.06和2.62。代码可在此处找到:https://github.com/willisma/sit
方法:回顾性纳入了 62 名接受 FDOPA PET 和 MRI 检查的未接受治疗的胶质瘤患者。对比增强 T1 加权图像、T2 加权图像、液体衰减反转恢复图像、表观扩散系数图和相对脑血容量图以及 FDOPA PET 图像用于体素特征提取。使用无监督两级聚类方法,包括自组织映射和 K 均值算法,并将每个类标签应用于原始图像。将肿瘤区域内每个类的标签对数比应用于支持向量机以区分 IDH 突变状态。计算受试者工作特征曲线的曲线下面积 (AUC)、准确度和 F1-socore,并将其用作性能指标。
在组织中,由于生理体积运动,灌注或扩散,水分子移动。扩散加权成像(DWI)使用运动编码梯度波形将MR信号敏感到水分子的扩散。水分子的扩散率是温度驱动和限制和/或受组织微观结构阻碍的。在37°C下的水温度约为2.9x10 -3 mm 2 /s,因此,这是组织中可观察到的扩散系数的物理上限[1]。在扩散模型中,几个参数可能代表水分子在细胞外组织和细胞内组织室中的扩散率,包括明显的扩散系数(ADC),平均扩散率(MD)对于扩散张量成像(DTI)模型(也称为D慢)模型(也称为s slow)模型(也称为Intera-voxel)。所有这些都受到2.9x10-
摘要:这项工作研究了有吸引力的聚合物融化中的纳米颗粒(NP)扩散,并揭示了两种不同的动态模式:车辆和核心 - 壳。通过扩散氧化铝NP(R np = 6.5 nm)和二氧化硅NP(R NP = 8.3和26.2 nm)中的各种分子量(14-1220 kDa)的聚(2-乙烯基吡啶)融化,我们检查了R np,Polymer size(R g)和表面化学的影响。使用飞行时间二级离子质谱和三层样品,我们测量横截面纳米颗粒浓度曲线作为退火时间的函数,并提取纳米颗粒扩散系数。小二氧化硅NP(r g / r np = 0.12 - 3.6)显示核心 - 壳行为,而氧化铝NP(r g / r np = 0.50 - 4.6)急剧差异,聚合物分子量的增加,与理论上预测的车辆扩散保持一致。从核心 - 壳到车辆扩散的过渡是分子量增加和较弱的NP/聚合物吸引力的结果,并促进了单体解吸时间的估计值。■简介
摘要:锂离子电池(LIBS)已成为可移植设备和运输设备的首选电池系统,因为它们的特定能量很高,良好的循环效果,低自我放电以及缺乏记忆效应。但是,过度低的环境温度会严重影响LIB的性能,在-40〜-60°C下几乎无法排放。有许多因素影响Libs的低温性能,最重要的是电极材料之一。因此,迫切需要开发电极材料或修改现有材料以获得出色的低温LIB性能。基于碳的阳极是在LIBS中使用的候选者。近年来,已经发现,石墨阳极中锂离子的扩散系数在低温下更明显地降低,这是限制其低温性能的重要因素。但是,无定形碳材料的结构很复杂。它们具有良好的离子扩散特性,晶粒尺寸,特定的表面积,层间距,结构缺陷,表面官能团和掺杂元件可能会对其低温性能产生更大的影响。在这项工作中,通过从电子调制和结构工程的角度修改基于碳的材料来实现LIB的低温性能。
当前对电解铝阴极碳钠渗透的研究主要是测量阴极膨胀曲线,主要显示宏观特征。然而,显微镜结构通常是不流失的。作为多孔介质,阴极碳块的扩散性能与其内部孔结构紧密相关。将阴极碳块视为多相复合材料,本研究从微结构的角度研究了钠扩散过程。开发了一个预测钠扩散的模型,考虑了孔隙率,温度,结合效应,电流降低和分子比例等因素。在Python中实现了一个随机聚合模型,并将其导入到有限元软件中,以使用Fick的第二定律模拟钠扩散。结果表明,孔隙率提高,温度较高,结合效应降低,电流密度增加和较高的分子比增强了钠浸润,降低了扩散耐药性并增加了扩散系数。模拟与实验结果很好地对齐,证实了其准确性和可靠性。
弥散加权磁共振成像 (DWI) 常用于诊断急性脑梗塞,因为它能够显示因受损细胞水扩散变化而观察到的细胞毒性水肿。DWI 功能取决于水的微分扩散速率或布朗运动。因此,它常用于神经肿瘤学领域,用于脑肿瘤患者的诊断和随访。弥散受限由表观扩散系数 (ADC) 值较低表示,这与细胞毒性水肿、细胞过多或致密内容物(出血和蛋白质)、细胞数量和细胞核/细胞质比率增加以及大分子积累有关。细胞外空间减少会限制水分子的转移,从而导致恶性肿块中的扩散受限。根据先前的研究,细胞含量高的肿瘤表现出更多的扩散限制和较低的 ADC 值 (11,33)。从 DWI 获得的 ADC 值特别与肿瘤细胞、治疗反应、神经胶质瘤等级和生存期相关(4,21,33)。
纳米多孔锡2 O 7(nptno)材料通过用离子液体(IL)作为指导温度的纳米多孔结构合成的溶胶 - 凝胶方法。nptno即使以50°C的充电速率,在5 c时为1000个周期和lini 0.5 mn 1.5 o 4-耦合的全细胞容量重新构成的全细胞能力接力为81%和87%的87%和87%cass in 1000 cycles at 1 c cycles at 1 c cycles at 1 c cycles nptno的高可逆能力为210 mAh g –1。 对1000个循环的NPTNO电极的研究表明,IL指导的介孔结构可以增强NPTNO细胞的可环性,这是由于缓解了重复的机械应力和由重复的LI +插入 - 插入 - 攻击过程引起的重复性机械应力和体积波动。 测得的LI +扩散系数从Galvanostatic间歇性滴定技术中表明,IL-启动策略确实确保了基于快速LI +扩散动力学的NPTNO细胞的快速再核能。 受益于纳米多孔结构,具有未阻碍的Li +扩散途径的NPTNO在基于钛基的氧化物材料中实现了Supe-rior速率能力,并且在TNO材料中具有最佳的全细胞环环性。 因此,证明了IL的模板潜力,并且出色的电化学性能确立了IL定向的NPTNO作为可快速回流LIB的有前途的阳极候选者。nptno的高可逆能力为210 mAh g –1。对1000个循环的NPTNO电极的研究表明,IL指导的介孔结构可以增强NPTNO细胞的可环性,这是由于缓解了重复的机械应力和由重复的LI +插入 - 插入 - 攻击过程引起的重复性机械应力和体积波动。测得的LI +扩散系数从Galvanostatic间歇性滴定技术中表明,IL-启动策略确实确保了基于快速LI +扩散动力学的NPTNO细胞的快速再核能。受益于纳米多孔结构,具有未阻碍的Li +扩散途径的NPTNO在基于钛基的氧化物材料中实现了Supe-rior速率能力,并且在TNO材料中具有最佳的全细胞环环性。因此,证明了IL的模板潜力,并且出色的电化学性能确立了IL定向的NPTNO作为可快速回流LIB的有前途的阳极候选者。
一名57岁的男性出现了三周持续三周的局灶性左上肢震颤病史,没有任何其他局部症状或迹象,没有类似的抱怨或任何其他医学疾病的相关病史。临床和实验室检查正常。大脑和宫颈脊柱磁共振揭示了弥漫性加权图像(DWI)上的局灶性皮质高强度,在左侧的左侧较高强度上,在表观扩散系数(ADC)和Flair图像上,左侧的高压相应明显可观,但在T2WI上没有。患者在医院的不明显过程中对患者进行症状管理,并进行了随访。一个月后,他报道了逐渐进行性双侧上和下肢的弱点和疼痛的抱怨,这在发作中是模糊的,双边有意震颤,渐进性发育不良的症状恶化,张力增加,音调增加,超反射症引起了所有四个limbs的症状。他有轻微的迷失方向,并报告了幻觉和失眠的神经精神症状。在检查时,生命力在正常