折射率,最小1.3630 1.3ss0 4.7。粘度,硅酸盐 ASTM D445-74 4.7.2 最小值 5 “C 20 10 最小值 25'C 2 2 氢离子浓度(PI) 7.0 至 8.5 7.0108.5 4.7.3 扩散系数,最小值 3 3 4.7.4 成形性 泡沫膨胀,最小值 5.0 S.o NFTA STD 412 4.7.5 泡沫 25% 排水时间,最小值,最小值 2.5 2.5 NFPA STD 412 4.7.5 腐蚀性 常规 冷轧,低碳钢 SICCI(UNS G 10-1OO),高强度,最大 I .5 1.5 ASTM E527 4.7.7 铜镍合金(90-10)(UNS C70600),微小损伤,最大值 I.0 1.0 ASTM S-S27 4.7.7 N,ckel-ppcr (70-30) (UNS N04400),微小损伤,最大值 I.0 I.0 ASTM E-527 4.7,7 青铜 (UNS C90500),毫克,最大值 100 100 ASTM ES27 4.7,7 耐腐蚀,MnSb (CRES) 雪橇,(UNS S304fXJ) 无凹坑 无损伤 4.7.7 总卤化物-p/m,最大值 210 ASTM D1821 4.7.8 干化学耐久性,燃烧耐受时间,秒,最小值 360 360 4.7.9 环境影响:毒性,LC50 m#L,最小 SW moo 4.1.12.1 COD,mg/L,最大 1000K 500K 4.7.12.2 ~20 最小 .65 .65 COD 4,7.123
新生儿时期的特定白质扩散特征与2年时的神经运动或神经认知结果相关。基于体素的分析T. Faundez 1,R。Recker 1,C。Borradori Tolsa 1,G。Lodygensky 1,Lazeyras 2,3和P. S. Huppi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. Genev,Generse for Geneva,Generse for Geneva,Gena for Genava and genev ander of Gena for Geneva and geneva for geneva and geneva of Geneva and geneva of Geneva for 3瑞士洛桑和日内瓦的生物医学成像中心(CIBM)中心的全部介绍取决于皮质完整性和完全骨髓的白质。髓鞘化是大脑发育的重要过程。此过程发生在胎儿时期,大部分时间为2岁。早产会导致脑部髓鞘的延迟和缺陷,对早期儿童发育和生命后期的神经运动和神经认知能力的影响。早产大脑后的发育困难以运动缺陷和注意力控制,语言发展和执行功能的神经认知延迟为特征。缺少这些缺陷的早期结构相关性。扩散MRI可深入了解大脑发育,扩散和明显扩散系数(ADC)的定量指数与脑成熟有关[1]。ADC值特别随着脑髓鞘形式降低[2]。仍然缺乏将新生儿时期区域MRI扩散变化与幼儿结局相关的研究。因此,这项研究介绍了新生儿时期基于体素的ADC分析的结果,以及2岁儿童的早产儿的神经运动和神经认知结果。
多硫化锂 (LiPSs) 的穿梭效应是阻碍锂硫电池发展的关键障碍之一。在此,我们提出了一种多孔 Mo 2 C-Mo 3 N 2 异质结构/rGO 主体,Mo 2 C-Mo 3 N 2 异质结构结合了 Mo 2 C 的高吸附性和 Mo 3 N 2 的高催化性的优点,从而实现了 LiPSs 在 Mo 2 C-Mo 3 N 2 异质界面上的快速锚定-扩散-转化。Mo 2 C-Mo 3 N 2 异质界面提高了 LiPSs 的捕获效率和向 Li 2 S 的转化率。rGO 为电子传输提供了快速路径,并充当了保护层,防止结构在循环过程中受损。密度泛函理论 (DFT) 计算表明,Mo 2 C 对 Li 2 S 4 的吸附能力比 Mo 3 N 2 强,Mo 3 N 2 具有更好的反应动力学特性。实验中,Mo 2 C-Mo 3 N 2 /rGO@S 电极表现出优异的倍率性能。在高硫负载量(3.4 和 5.0 mg cm − 2 )下,300 次循环后容量保持率为 78%,在 0.5C 下为 70%。Mo 2 C-Mo 3 N 2 /rGO 硫电极表现出 4.56 × 10 -7 cm 2 s − 1 的高 Li + 扩散系数,这得益于界面处 LiPSs 的加速转化。我们的研究结果揭示了 LiPSs 的锚定-扩散-转化在抑制穿梭效应方面的关键作用。
迷人的魅力,美丽的底部和夸克 - 格鲁恩等离子体在大型强调对撞机时代Santosh K. Das 1和Raghunath Sahoo 2摘要:在通过大爆炸创造了我们宇宙的几微秒之后,原始物质被认为是Matter-Matter Matter Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-tocark和Gluons and Gluons and Gluons of Corcark和Gluons的汤。这将在实验室中通过以超相关速度碰撞重核来创建。可以在相对论重的重离子撞机(RHIC),美国纽约,纽约,美国纽约州布鲁克哈文国家实验室和大型的Hadron Collider(LHC)的Quark和Gluons的等离子体,称为Quark-Gluon等离子体(QGP)。重的夸克,即魅力和底部夸克,被认为是表征QGP的新型探针,因此被认为是量子染色体动力学(QCD)物质。重型夸克传输系数在理解QGP的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克传输系数,这是现象学研究的关键成分,它们有助于解散不同的能量损失机制。我们对QGP中的重夸克阻力和扩散系数进行了总体视角,并讨论了它们的潜力,作为解散不同的强调机制的探针,并探测了在非中央重型离子碰撞中产生的初始电磁场。对未来测量结果进行了实验观点,并特别强调了重型风味,这是新技术发展的下一代探针。关键词:大爆炸,夸克 - 杜伦等离子体,重型离子碰撞,重型风味
摘要 随着医学成像研究中使用的数据集规模不断扩大,对自动化数据管理的需求也随之增加。一项重要的数据管理任务是对数据集进行结构化组织,以保持完整性并确保可重用性。因此,我们研究了此数据组织步骤是否可以自动化。为此,我们设计了一个卷积神经网络 (CNN),可根据视觉外观自动识别八种不同的脑磁共振成像 (MRI) 扫描类型。因此,我们的方法不受扫描元数据不一致或缺失的影响。它可以识别造影前 T1 加权 (T1w)、造影后 T1 加权 (T1wC)、T2 加权 (T2w)、质子密度加权 (PDw) 和派生图(例如表观扩散系数和脑血流)。在第一次实验中,我们使用了脑肿瘤患者的扫描结果:719 名受试者的 11065 次扫描用于训练,192 名受试者的 2369 次扫描用于测试。CNN 的总体准确率达到 98.7%。在第二个实验中,我们用第一个实验中的所有 13434 张扫描图训练 CNN,并用 1318 名阿尔茨海默病患者的 7227 张扫描图测试 CNN。在这里,CNN 的总体准确率达到了 98.5%。总而言之,我们的方法可以准确预测扫描类型,并且可以快速自动地对脑部 MRI 数据集进行分类,几乎无需人工验证。通过这种方式,我们的方法可以帮助正确组织数据集,从而最大限度地提高数据的可共享性和完整性。
摘要:胆固醇是生物膜中的一个中心构建块,它诱导定向顺序,减慢扩散,使膜僵硬以及驱动结构域的形成。分子动力学(MD)模拟在分子水平解决这些效果方面起着至关重要的作用。然而,最近显而易见的是,不同的MD力场在定量不同的行为上预测了不同的行为。尽管很容易被忽视,但由于磁场迅速发展朝模拟体内条件的复杂膜的模拟迅速发展:相关的多组分仿真必须准确捕获其基本构件之间的相互作用,例如磷脂和胆固醇。在这里,我们定义了针对C-H键顺序参数的二元脂质混合物模拟的定量质量度量,以及来自NMR光谱的侧向扩散系数以及X射线散射的构型因子。基于这些措施,我们对常用的力场描述棕榈酰丙酰磷脂酰胆碱(POPC)和胆固醇的二元混合物的结构和动力学的能力进行系统评估。没有测试的力场清楚地表现出在经过测试的属性和条件上的表现。仍然,SlipID参数在我们的测试中提供了最佳的总体性能,尤其是当评估中包含动态属性时。这项工作中介绍的质量评估指标将尤其是使用自动方法来促进多组分膜的未来力量现场开发和改进。
摘要:理解溶液中脂质的多态性是细胞内递送系统发展的关键。在这里,我们研究了聚(乙二醇)-lipid(PEG-脂质)共轭物的动力学,目的是更好地理解其分子特性和溶液中的聚集行为。这些PEG脂质用作脂质纳米颗粒(LNP)的成分。LNP正在通过对SARS-COV-2的现代疫苗接种策略中的利用来增加受欢迎程度。系统的表征是通过不同溶剂(例如乙醇和水)中的流体动力学的经典方法进行的,乙醇和水也通常用于LNP配方。我们能够阐明乙醇中分离的PEG脂质的结构相关的水动力特性,从而揭示了随机线圈聚合物的流体动力不变的典型预期值。凭借相同的实验环境,对水中的PEG脂质行为进行了很好的研究,对PEG脂质而言,这比乙醇不如乙醇。我们的实验表明,溶解在水中的PEG脂质形成良好的胶束,这些胶束可以定量地以它们的PEG-脂质聚合物Unimer的聚集程度,其水动力学大小和溶剂化,即对所识别的胶束的定量确定或与之相关。定量结果。我们通过实验证明胶束系统可以被视为可溶剂可渗透的水合球。■简介获得的扩散系数和流体动力大小与分析超速离心(AUC)数据得出的数值结果非常吻合。冷冻传输电子显微镜(Cryo-TEM)支持流体动力学研究的结构见解,特别是在观察到的形成胶束的球形结构方面。
1 简介:长期太空居住将需要在先进制造、热控制和生命支持过程方面进行变革性改进[1][2][3]。先进制造工艺包括金属和金属合金的增材制造、软物质、金属的定向能量沉积和晶体生产等[4]。热控制过程包括管理电子设备、太空核反应堆、电池和生命支持系统的热量释放。这些过程对于国际空间站、月球表面的居住地以及涉及美国宇航局科学任务理事会 (SMD) 和人类探索的所有太空计划都很重要[5]。由于对部署在轨道上或月球表面的硬件和空间模块的访问有限,系统的设计和开发几乎没有或根本没有误差余地。迭代之间的时间需要结合基于合理理论模型或机器学习算法的模拟。随着太空计划越来越深入太阳系,预先了解材料和系统的行为变得越来越重要。了解系统行为(尤其是在太空极端环境下的行为)对于充分利用项目预算、最大程度降低人员伤亡风险以及推动未来几代人的进步必不可少。正确设计和控制这些过程和系统需要准确了解系统参数和材料热物理特性,以便进行模拟并最终设计和开发实际系统。对热物理和化学特性的理解被纳入过程算法中,从而实现操作优化,并最大程度减少为太空栖息地开发的宝贵能源的重复使用。这种理解的基础在于准确确定热物理特性。关键的热物理特性是与流体过程有关的特性,例如密度、粘度、表面张力和弹性。其他重要的热物理特性包括热导率和质量传递特性,例如扩散系数。
摘要 相干激子的长距离快速传输对于高速激子电路和量子计算应用的开发具有重要意义。然而,由于材料中原生状态下的激子传输存在较大的非均匀展宽和失相效应,因此大多数相干激子仅在某些低维半导体与腔耦合时才能观察到。在这里,通过将相干激子限制在二维量子极限,我们首次在原子级厚度的二维 (2D) 有机半导体中观察到分子聚集引起的相干态间激子的“超传输”,测得的高有效激子扩散系数在室温下约为 346.9 cm 2 /s。这个值比其他有机分子聚集体和低维无机材料的值高出一个到几个数量级。单层并五苯样品是一种非常干净的二维量子系统(厚度约 1.2 纳米),具有高结晶性(J 型聚集)和最小的界面态,在未与任何光学腔耦合的情况下,表现出来自 Frenkel 激子的超辐射发射,这通过温度相关的光致发光 (PL) 发射、高度增强的辐射衰减率、显著缩小的 PL 峰宽和强方向性平面内发射得到了实验证实。观察到单层并五苯样品中的相干性在 ~135 个分子上非局域化,这明显大于在其他有机薄膜中观察到的值(几个分子)。此外,单层并五苯样品中激子的超传输表现出高度的各向异性行为。我们的研究结果为未来高速激子电路、快速 OLED 和其他光电器件的开发铺平了道路。
目的:确定最小表观扩散系数 (minADC) 值是否可以对接受 125 I 近距离放射治疗的胶质瘤患者的生存进行分层。方法:本研究经机构审查委员会批准,无需知情同意。本研究纳入了 23 名高级别胶质瘤 (HGG) (n=9) 或多模式治疗后复发 (n=14) 患者(16 名男性,7 名女性;中位年龄 48 岁)。在 125 I 植入前获取 minADC 值。使用 Cox 比例风险回归模型和 Kaplan-Meier 方法及对数秩检验分析总生存期 (OS) 和无进展生存期 (PFS)。结果:对于接受125I治疗的患者,ADC≥1.0*10^ -3 mm 2 ·sec -1(高minADC)患者与ADC<1.0*10^ -3 mm 2 ·sec -1(低minADC)患者的OS风险比为0.220(95%可信区间:0.066,0.735)。高minADC值患者的中位OS为12个月,低minADC值患者的中位OS为6.0个月,差异有统计学意义(p=0.032)。高minADC值患者的中位PFS为12个月,低minADC值患者的中位PFS为4个月,长秩检验显示差异有统计学意义(p=0.013)。多因素分析结果显示,125I植入前minADC是接受125I近距离治疗患者OS和PFS的独立预测因素。结论:125I植入前ADC分析可以对125I治疗的胶质瘤患者的预后进行分层,这可能有助于为胶质瘤患者选择合适的治疗方法。