图 1. 沸石生成扩散过程的图形模型。a,本文开发的扩散模型的沸石结构输入表示。b,沸石生成扩散模型的噪声和去噪过程的图形说明。c,沸石网格的渐进采样过程
心脏扩散MRI(DMRI)是一种新兴的心肌表征的新兴方法,并且不需要对比剂。当前,最常见的DMRI方法是DTI。1已应用于一系列病理中,包括肥厚性心理 - 肠道 - 2,3张扩张的心肌病,4个梗塞5和杏仁症,6和主动脉瓣狭窄后的重塑7;心肌病理学的典型标志是平均扩散率(MD)的增加和散布各向异性(FA)的降低。dTI使用单个扩散张量来表征扩散过程,该扩散过程代表每个成像体素中组织的平均扩散特征。因此,它不能说明可能是由于限制,结构各向异性无序或具有异质密度的组织可能导致的非高斯扩散。8,9富度热量,每当组织是异质或复杂的,它的敏感性和特异性都较差,从而导致检测和区分涉及多个具有不同方向和特征的细胞群体的过程有限。10,11
基于扩散的图生成模型可有效生成高质量的小图。但是,很难将它们缩放到包含节点的大小的大图。在这项工作中,我们提出了Edge,这是一种新的基于扩散的图生成模型,可为大图提供生成任务。该模型是通过逆转离散扩散过程来开发的,该离散扩散过程随机去除边缘直到获得空图。它利用扩散程序中的图形稀疏性来提高计算效率。特别是,边缘仅关注图节点的一小部分,并且仅在这些节点之间添加边缘。没有损害建模能力,它的边缘预测比以前的基于基于扩散的属性模型要少得多。此外,边缘可以显式地对训练图的节点度进行建模,然后在捕获图形统计时提高训练图。实证研究表明,边缘比竞争方法更有效,并且可以产生数千个节点的大图。它还优于生成质量的基线模型:所提出的模型发电的图形统计信息与训练图更相似。
在分析离散时间采样的数据时,即使基础路径是连续的,也会在采样时间序列的轨迹中遇到连续的不连续性。另一方面,由连续随机过程有限采样引起的不连续性与样本路径中的实际不连续性引起的区别是主要问题之一。类似的线索导致我们提出了一个问题:是否可以提供一个模型,将数据集中的任何随机变化视为跳跃事件,而不管给定时间序列是分类为扩散还是跳跃 - 扩散过程?为了解决这个问题,我们编写了一个新的随机动力学方程,其中包括一个漂移术语和具有不同分布式大小的泊松跳跃过程的组合。在本文中,我们首先以最简单的形式介绍了此方程,包括漂移术语和跳跃过程,并表明这种跳跃方程能够描述扩散过程的离散时间演变。之后,我们通过考虑方程中的更多跳跃过程来扩展建模,该过程可用于模拟具有各种分布式振幅的复杂系统。在每个步骤中,我们还显示建模所需的所有未知函数和参数都可以从测量的时间序列中获得非参数获得。
基于得分的扩散模型使用时间转移的扩散过程从未知目标分布中生成样品。这种模型代表了工业应用中的最新方法,例如人造图像产生,但最近注意到,通过考虑具有重尾部特征的注入噪声,可以进一步提高其性能。在这里,我将生成扩散过程的概括性化为一类广泛的非高斯噪声过程。我考虑由标准高斯噪声驱动的前进过程,并以超级强制的泊松跳跃为代表有限的活动莱维过程。生成过程被证明由依赖跳跃幅度分布的广义分数函数控制。概率流ode和SDE配方都是使用基本技术努力得出的,并且用于从多元拉普拉斯分布中得出的跳跃振幅实现。非常重要的是,对于捕获重尾目标分布的问题,尽管没有任何重尾特性,但跳跃延伸拉普拉斯模型的表现就超过了由α-稳定噪声驱动的模型。该框架可以很容易地应用于其他跳跃统计数据,这些统计数据可以进一步改善标准扩散模型的性能。
摘要 - 在突触分子通信中,神经递质(NTS)激活突触后受体(NTS),由随机反应扩散过程控制,因此固有地随机。目前尚不完全了解这种随机性如何影响目标细胞中的下游信号传导,最终是神经计算和学习。反应扩散过程的统计表征很难,因为NTS和受体的可逆双分子反应使系统非线性。因此,突触裂缝中受体占用率的现有模型取决于简化的假设和近似值,从而限制其实际适用性。在这项工作中,我们提出了一个新型的统计模型,以根据化学主方程(CME)来控制突触信号传递的反应扩散过程。我们展示了如何通过基于随机粒子的计算机模拟(PBSS)来计算CME效率并验证所获得的结果的准确性。此外,我们将提出的模型与文献中提出的两个基准模型进行了比较,并表明与PBS相比,它提供了更准确的结果。最后,提出的模型用于研究系统参数对NTS和受体结合事件之间统计依赖性的影响。总而言之,提出的模型为朝着突触信号传输的完整统计表征提供了一步。
从概率分布中生成样品是机器学习和统计数据中的一项基本任务。本文提出了一种新的方案,用于从分布中取样的新方案,x∈Rd的概率密度µ(x)尚不清楚,但给出了有限的独立样本。我们在有限的地平线t∈[0,1]上构建schr¨odinger桥(SB)扩散过程,该过程诱导了从t = 0处的固定点开始的概率演变,并以t = 1处所需的目标分布µ(x)结束。扩散过程的特征是随机差异方程,其漂移函数可以通过简单的一步过程从数据样本估算。与为SB问题开发的经典迭代方案相比,本文的方法非常简单,高效且计算便宜,因为它不需要培训神经网络,因此在构建网络体系结构时会避免许多挑战。通过在多模式低维模拟数据和高维基准图像数据上进行一系列数值实验来评估我们的新生成模型的性能。实验结果表明,基于SB桥的算法产生的合成类别与从现场最新方法产生的样品相当。我们的配方为开发可以直接应用于大型现实世界数据的有效扩散模型的新机会开辟了新的机会。
NEN 8100 – 建筑环境中的风障和风害 CUR 103 – 建议 103。风洞调查。 Civieltechnisch Centrum Uitvoering Research en Regelgeving VDI 3783/12 – 环境气象学。大气边界层流动和扩散过程的物理模拟。风洞的应用。 2000 年 12 月。RBL 2007 – 2007 年空气质量评估方案,Staatscourant 2007 年 11 月 13 日,220,第 21 页。