新系列增强了电信、军事和射频测试与测量客户可用的切换选项。加利福尼亚州霍桑市 – 2022 年 2 月 8 日 – Teledyne Relays 今天宣布推出新的宽温度范围、工作频率高达 18 GHz 的密封继电器。新的 RF131 和 GRF131 单刀双掷 (SPDT) 型号是非闩锁的,提供故障安全功能。新产品扩展了主要射频测试和电信市场可用的坚固选项。RF131 和 GRF131 非闩锁型号是对 Teledyne Relays 广受推崇的等效通孔 RF121 和表面贴装 GRF121 磁锁继电器的补充。新的机电开关的工作温度范围为 -55 至 +85 °C,整个密封为玻璃-金属密封,可为最具挑战性的环境提供高达 18 GHz 和 40 Gbps 数据速率的故障安全功能。 RF131 和 GRF131 均采用扩展的 Centigrid ® 封装,继承了 Teledyne Relay 微型 RF 继电器的传统,在接触系统的内部结构中融入精密传输线结构,以确保最佳 RF 性能、最小插入损耗和信号路径之间的高隔离度。每个继电器都可以配备 5 或 12 V 额定线圈,并具有防尘防污设计,预期寿命长达 200 万次。RF131 是通孔安装版本,可以切换高达 12 GHz 的频率并具有 20 Gbps 的信号完整性。RF131 配备标准镀金 .75 英寸引线,也可以订购焊接或符合 RoHS 标准的浸焊引线。与通孔解决方案相比,GRF131 具有独特的接地屏蔽,便于表面安装并扩展频率范围。这将 RF 能力提高到 18 GHz,信号完整性提高到 40 Gbps。 Teledyne Relays 全球销售与营销总监 Michael Palakian 表示:“这些继电器专为 RF 衰减器、RF 开关矩阵、高频扩频无线电、ATE 以及其他需要可靠高频信号保真度和性能的应用而设计。低功耗使其成为功率预算受限应用的理想选择。” 新产品现已接受订购。更多信息请访问我们的网站:RF 和信号完整性 (teledynedefenseelectronics.com)
1. 理解蜂窝通信概念 2. 研究移动无线电传播 3. 研究无线网络不同类型的 MAC 协议 UNIT -I 蜂窝概念-系统设计基础:简介、频率重用、信道分配策略、切换策略 - 优先切换、实际切换考虑、干扰和系统容量 - 同信道干扰和系统容量、无线系统的信道规划、相邻信道干扰、减少干扰的功率控制、中继和服务等级、提高蜂窝系统的覆盖范围和容量 - 小区分裂、扇区划分。第二单元移动无线电传播:大规模路径损耗:无线电波传播简介、自由空间传播模型、功率与电场的关系、三种基本传播机制、反射-电介质反射、布儒斯特角、完美导体反射、地面反射(双射线)模型、衍射-菲涅尔区几何、刀刃衍射模型、多重刀刃衍射、散射、室外传播模型-Longley-Ryce 模型、Okumura 模型、Hata 模型、Hata 模型的 PCS 扩展、Walfisch 和 Bertoni 模型、宽带 PCS 微蜂窝模型、室内传播模型-分区损耗(同一楼层)、楼层间分区损耗、对数距离路径损耗模型、爱立信多断点模型、衰减因子模型、信号穿透建筑物、射线追踪和场地特定建模。第三单元移动无线电传播:小规模衰落和多径:小规模多径传播-影响小规模衰落的因素、多普勒频移、多径信道的脉冲响应模型-带宽和接收功率之间的关系、小规模多径测量-直接射频脉冲系统、扩频滑动相关器信道探测、频域信道探测、移动多径信道参数-时间弥散参数、相干带宽、多普勒扩展和相干时间、小规模衰落的类型-由于多径时间延迟扩展而导致的衰落效应、平坦衰落、频率选择性衰落、由于多普勒扩展而导致的衰落效应-快速衰落、慢速衰落、多径衰落信道的统计模型-Clarke 的平坦衰落模型、Clarke 模型中由于多普勒扩展而导致的频谱形状、Clarke 和 Gans 衰落模型的模拟、电平交叉和衰落统计、双射线瑞利衰落模型。第四单元均衡和分集:介绍、均衡基础知识、训练通用自适应均衡器、通信接收器中的均衡器、线性均衡器、非线性均衡器
以及信息科学与应用国际会议 (ICISA) ⋅ 工程学院模拟与混合信号设计与测试中心委员会成员 ⋅ IEEE 微波理论与技术学报、IEEE 电子器件学报和 IEEE 固态电路杂志的技术审稿人 精选出版物 ⋅ S. Hamedi-Hagh、MY Siddiqui、M. Singh 和 S. Ardalan,“具有恒定回波损耗的低压数字控制 4GHz 可变增益放大器,”微电子选定领域杂志,2012 年。 ⋅ S. Hamedi-Hagh 和 D.-H. Park,“纳米线晶体管在驱动纳米线 LED 中的应用,”电气电子材料学报,第 13 卷,第 2 期,第 73-77 页,2012 年。 ⋅ S. Hamedi-Hagh、M. Tabesh、S. Oh、NJ Park 和 D.-H. Park,“用于近场通信的 UHF CMOS 前端设计”,电气工程与技术杂志,KIEE,第 6 卷,第 6 期,第 817-823 页,2011 年。⋅ Bindal, D. Wickramaratne 和 S. Hamedi-Hagh,“利用硅纳米线技术实现直接序列扩频基带发射器”,纳米电子学和光电子学杂志,第 5 卷,第 1 期,第 1-12 页,2010 年。⋅ Bindal, T. Ogura、N. Ogura 和 S. Hamedi-Hagh,“用于实现带扫描链的现场可编程门阵列架构的硅纳米线晶体管”,纳米电子学和光电子学杂志,第 5 卷,第 1 期,第 1-12 页,2010 年。 4,第 342-352 页,2009 年。⋅ S. Hamedi-Hagh、JC Chung、S. Oh、NJ Park 和 DH Park,“用于 GPS 通信系统的高性能贴片天线的设计”,电气工程与技术杂志,KIEE,第 342-352 卷。 4,第 2 期,282-286 页,2009 年。⋅ S. Hamedi-Hagh 和 A. Bindal,“下一代纳米线放大器的设计和特性”,《VLSI 设计杂志》,文章 ID 190315,2008 年。⋅ JC Chung 和 S. Hamedi-Hagh,“单芯片通信系统的 PCB 匹配电感器和天线的设计”,《国际微波科学与技术杂志》,文章 ID 287627,2008 年。⋅ Hamedi-Hagh 和 A. Bindal,“使用完全耗尽周围栅极晶体管的纳米线 CMOS 放大器的特性”,《纳米电子学与光电子学杂志》,第 4 卷,第 2 期,第 282-286 页,2009 年。 ⋅ S. Hamedi-Hagh、S. Oh、A. Bindal 和 DH Park,“使用纳米线 FET 设计下一代放大器”,电气工程与技术杂志,KIEE,第 3 卷,第 4 期,第 566-570 页,2008 年。⋅ S. Hamedi-Hagh 和 A. Bindal,“用于高速模拟集成电路的硅纳米线场效应晶体管的 SPICE 建模”,IEEE Transactions on Sotoudeh Hamedi-Hagh 第 3/6 页纳米技术,第 7 卷,第 766-775 页,2008 年。⋅ Bindal、S. Hamedi-Hagh 和 T. Ogura,“用于现场可编程门阵列架构应用的硅纳米线技术”,纳米电子学与光电子学杂志,第 3 卷,第 4 期,第 566-570 页,2008 年。 3,第 2 期,第 1-9 页,2008 年。 ⋅ Bindal 和 S. Hamedi-Hagh,“硅纳米线晶体管及其在未来 VLSI 中的应用:16×16 SRAM 的探索性设计研究”,纳米电子学和光电子学杂志,第 2 卷,第 294-303 页,2007 年。⋅ Bindal、A. Naresh、P. Yuan、KK Nguyen 和 S. Hamedi-Hagh,“利用硅纳米线技术设计双功函数 CMOS 晶体管和电路”,IEEE 纳米技术学报,第 6 卷,第 291-302 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“利用硅纳米线技术设计新型脉冲神经元”,纳米技术杂志(物理研究所),第 2 卷,第 301-302 页,2007 年。 18,第 1-12 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“关于节能硅纳米线动态 NMOSFET/PMESFET 逻辑的探索性研究”,IEE 科学、测量和技术会议录,第 1 卷,第 121-130 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“使用硅纳米线技术实现交叉开关架构的静态 NMOS 电路”,半导体、科学和技术杂志(物理研究所),第 22 卷,第 54-64 页,2007 年。⋅ Bindal 和 S. Hamedi-Hagh,“硅纳米线技术对单功函数 CMOS 晶体管和电路设计的影响”,纳米技术杂志(物理研究所),第 17 卷,第 4340-4351 页,2006 年。