与经典电子不同,量子态以难以测量而著称。从某种意义上说,电子的自旋只能处于两种状态之一,即向上或向下。通过简单的实验可以发现电子处于哪种状态,对同一电子的进一步测量将始终证实这一答案。然而,这幅图景的简单性掩盖了电子复杂而完整的本质,电子总是处于两种状态之一,而状态会根据测量方式而变化。量子态断层扫描是一种使用许多相同粒子的集合来完全表征任何量子系统(包括电子自旋)的过程。多种类型的测量可以从不同的特征基重建量子态,就像经典断层扫描可以通过从不同的物理方向扫描三维物体来对其进行成像一样。在任何单一基础上进行额外的测量都会使该维度更加清晰。本文主要分为两部分:层析成像理论(第一部分和第二部分)和光子系统的实验层析成像
研究问题、变量和操作定义、假设、抽样。开展和报告研究的道德规范 研究范式:定量、定性、混合方法 研究方法:观察、调查 [访谈、问卷]、实验、准实验、实地研究、跨文化研究、现象学、扎根理论、焦点小组、叙述、案例研究、人种学 心理学中的统计学:集中趋势和离散度的测量。正态概率曲线。参数 [t 检验] 和非参数检验 [符号检验、Wilcoxon 符号秩检验、Mann-Whitney 检验、Kruskal-Wallis 检验、Friedman]。功效分析。效应量。相关分析:相关 [乘积矩、等级顺序]、偏相关、多重相关。特殊相关方法:双列、点双列、四分法、phi 系数。回归:简单线性回归,多元回归。
为口腔 - 芯片模型创建基本结构涉及设计一个微流体芯片,该微流体芯片复制必需的组件并创建模拟口腔复杂性的微环境。微流体芯片可以由各种材料制成,包括玻璃,硅和聚合物。微流体芯片的标准制造技术包括软光刻,光刻图和注射成型。这些方法可以在芯片上创建复杂的微观结构和通道。微流体芯片应复制口腔的关键成分,包括代表各种口腔组织的细胞培养室,例如上皮细胞,成纤维细胞和唾液腺细胞,这些细胞包含在细胞外基质中。细胞外基质可以结合水凝胶或其他材料,以提供结构支撑和细胞附着和生长的基板。结合灌注系统可模拟血液,使营养素,氧气和药物的递送2,3。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
层析成像是分析内部成分排列的一种方法。医学可能是利用这种方法并推动其发展的最著名学科。[1–3] 然而,层析成像也已应用于其他研究领域,如材料科学[4,5]、生物学[6]、考古学[7]甚至流体动力学[8],并且在工业领域也越来越受到认可,例如用于质量控制[9]或无损检测[10]。图像采集与实时重建算法[11]、高级图像分析[12]、特征分割和识别分析算法[13,14]与现代机器学习工具[15,16]的结合增强了这种方法的潜力。如今,实验室扫描仪普及且功能强大,受益于改进的空间和时间分辨率,尽管尖端实验仍然局限于高亮度同步加速器和X射线自由电子激光器。可以在极短的时间内获得高空间分辨率。[17,18] 对高空间和时间分辨率、大视野和高总记录时间的需求意味着目标的冲突。文献中概述了不同设备可用的实际速度和分辨率。[19–21]
自动驾驶汽车(SDVS)的抽象开发人员与可能的未来有一个特定的想法。公众不得分享其基于的假设。在本文中,我们分析了英国调查(N¼4,860)和美国(n¼1,890)公众的自由文本响应,这些公众询问受访者在想到SDV时会想到什么弹簧,以及为什么应该或不应该开发它们。响应(平均每个参与者的总共27个单词)倾向于提出安全的希望,并且更常规地担心。许多受访者都提出了技术,其他道路使用者与未来之间关系的替代书籍。而不是接受一种主导的公众参与方法,该方法试图使公众从这些观点中教育,而是建议这些观点应视为社会情报的来源,并为建立更好的运输系统做出了潜在的建设性贡献。预期治理,如果要包容,则应寻求理解和整合公众观点,而不是拒绝它们是不合理的或可变的。
