图4。在2019年至2024年(a)之间收到的与3RS相关的ITF简报会议请求的数量,提出的讨论的主要主题(b),申请人类型(c)和EMA ITF提供的建议,以响应请求(d)。
图4。在2019年至2024年(a)之间收到的与3RS相关的ITF简报会议请求的数量,提出的讨论的主要主题(b),申请人类型(c)和EMA ITF提供的建议,以响应请求(d)。
平板扫描仪已成为高分辨率,单像材料捕获的有前途的设备。但是,现有方法假设非常具体的条件,例如均匀的弥散照明,仅在某些高端设备中可用,从而阻碍其可扩展性和成本。相比之下,在这项工作中,我们引入了一种受固有图像分解启发的方法,该方法可以准确地消除阴影和镜面性,从而有效地允许使用任何平板扫描仪捕获。此外,我们以不透明和透射率的估计,全材料外观(SVBSDF)的关键成分(SVBSDF)的估计来探讨了单位材料反射捕获的先前工作,以非常高的分辨率和准确性改善了用平板扫描仪捕获的任何材料的结果。©2025 Elsevier B.V.保留所有权利。
1纳米工程系,加利福尼亚州圣地亚哥分校,加利福尼亚州拉霍亚,美国92093,美国2劳动力DeRéactivitéet Chimie et Chimie des Solyes(LRCS) Electrochimique de l'Energie(RS2E),CNRS 3459,Hub de l'Energie,80039,法国Amiens,Amiens,4个国家可再生能源实验室,15013年,丹佛West Parkway,Golden,Golden,Golden,Golden,Golden,Colorado 80401,美国,美国,美国50401年,美国50401年,美国综合大学。和工程,加利福尼亚大学圣地亚哥分校,加利福尼亚州,美国92093,美国7 Alistore-Eri欧洲研究所,CNRS FR 3104,Hub de l'Energie,80039法国阿米恩斯,法国80039,法国80039 Institut Institut Universiatut de France de France de France de France de France,75005 Paris,France 9 Heptrance 9 Hypero Scientipic scientipic sciential 5 pariuts Scientipic nestripicigantificientiphipic fishericigicatific 5美国加利福尼亚州加利福尼亚大学加利福尼亚大学加利福尼亚大学92093,美国加利福尼亚大学可持续电力与能源中心(SPEC) *相应的作者:jdoux@eng.ucsd.edu),shmeng@ucsd.edu(Y。S. M.)关键字:特征,断层扫描,建模,机器学习,人工智能,内部内实验,相关显微镜
摘要 - 早期关于脑血管式语义分割的研究使用了经典的图像分析方法来从图像中提取血管树。如今,深入学习的方法已被广泛利用用于各种图像分析任务。在语义细分框架中处理神经网络时的强大限制之一是需要处理地面真理分段数据集,该数据集将在其中学习任务。手动以3D体积(通常为MRA-TOF)手动分割动脉可能很麻烦。在这项工作中,我们旨在从新的角度解决血管树分割。我们的目标是从使用CT扫描的小鼠血管构建图像数据集,并以一种精确模仿人脑的统计特性的方式增强这些血管。由于其特定的采集方式,鼠标图像的分割很容易自动化。因此,这样的框架允许生成培训卷积神经网络所需的数据 - 即增强的鼠标图像和相应的地面真实分割 - 无需任何手动分割程序。但是,为了生成具有一致属性的图像数据集(与MRA图像非常相似),我们必须确保增强鼠标图像的统计属性确实与人类MRA的获取符合正确。在这项工作中,我们详细评估了在MRA-TOF上获得的人动脉与我们模型产生的“人源化”小鼠动脉的相似性。最后,一旦模型进行了正式验证,我们将使用卷积神经网络实验其适用性。
许多上述系统可以以颗粒物质的形式存在,其中诸如形态,布置,组成和孔隙率等参数控制其功能特性。颗粒可以表现出内在的内部孔网络。另外,以聚集的形式或填充成颗粒,柱或反应时,会从其填料结构中创建其他颗粒孔隙空间。当将这些不同的孔隙空间组合在一起时,会出现分层孔系统,可以根据运输,反应动力学或动态吸附来量身定制以提供增强的性质。[3,5,14]评估粒子和孔统计的评估,例如粒子和孔径,互连性,折磨或封闭/开放式孔隙率是表征和随后优化此类材料的关键。单个颗粒,它们作为功能结构的团聚形式以及组合的颗粒内和颗粒孔隙空间通常延伸到几个长度尺度上。内部孔的范围从微(<2 nm)到介孔(2 - 50 nm)的状态,直至较大的大孔(> 50 nm),而颗粒间孔通常是较大的大孔。[14]单个颗粒的大小只有几nm到几十µm,它们的团聚和包装结构通常是宏观尺寸的。[5]难度是对所有必要的,函数确定的特征的完整评估,仅使用一种3D表征技术就无法执行。
摘要:全金属 3D 打印技术可以为不同应用构思新结构。本文探讨了首次采用全金属 3D 单元格拓扑结构执行宽角度阻抗匹配层的潜力。推导出一种针对斜入射的新等效电路,可以很好地估计线性极化辐射场主扫描平面内扫描范围(θ = [0 ◦, 55 ◦])的单元响应。该分析模型随后用于开发通用天线的宽角度阻抗匹配设计方法。该方法已在实践中测试,以匹配 18 GHz 的金属喇叭制成的相控阵。在 H 平面的角度 θ > 35 ◦ 的模拟中获得了 5 dB 的改善。
摘要:从基于现实的数据开始的3D几何形状的重建是具有挑战性的,并且由于对现有结构进行建模和建筑遗产的复杂性的困难,因此具有挑战性且耗时。本文介绍了一种方法论方法,用于对测量产出的自动分割和分类,以改善从激光扫描和摄影数据的解释和构建信息建模。的研究重点是测量19-20-21世纪后期的网状,空间网格结构,这是我们的建筑遗产的一部分,这可能需要监视维护活动,并依赖于人工智能(机器学习和深度学习),用于以下方面: 加工。专注于博洛尼亚(Bologna)的钢中的网格结构的案例研究,这项工作就数据准确性,几何和空间复杂性,语义分类和组件识别提出了许多关键问题。
1 UMR 1107插入/UCA,Chu Clermont Ferrand,Universit和Clermont Auvergne,Neurmont Ferrand,法国; sylvain.lamoine@uca.fr(S.L.); (M.C。); David.A.Barrien.com(D.A.B.); vanexs_63@glass.com(V.P.); (M.F.); laetitia.prival@uc.fr(L.P.); julie.barri@uca.fr(J.B。); funfish-fill.fr(l.b。);大卫。); youussef。); alain.eschanger@uca.fr(A.E。)2 IGRS,CNR,INSERM,FACUL和DESIGN,UNIVERSIT和CLERMONT AUVERGNE,63000 CLEMONT-FERRAND,法国; emilie.big enmity.fr(E.B.); benjamin.bertin@uca.fr(B.B.); yoan.enabled@uca.fr(y.r。)3秋天和法国63000 Clermont Ferrand的Clermont Auvergne的病人陪伴的灾难; Clermont-Ferrand,诊所和创新,63000 Clermont Ferrand,法国6镇痛研究所,Facul and Decine,BP38,63001法国Ferrand *通讯员:繁华Syromes@uca.fr;电话: +33-(0)-4-7317-8235;传真: +4-4-7327-7162
自动脑分割算法通常依赖高分辨率 T 1 加权 (T1w) 或 T 2 加权 (T2w) 解剖图像来注释组织类型。这些算法依赖于不同脑组织和区域的体素对比度和强度差异来描绘脑组织和区域边界。大多数情况下,成人和儿童的脑组织和区域边界很容易描绘;然而,它们在婴儿数据中通常不太准确。这可能是由于大脑在出生后头几年经历了重大变化,例如髓鞘形成、突触形成和神经胶质增生 1,15,16 。例如,0 至 3 个月大的婴儿的 GM 和 WM 体素对比度与成人相反(图 2),从大约 5-9 个月开始对比度降低,导致组织看起来非常相似(图 2),而在 5-9 个月及以后的后期阶段,大脑开始模仿成人大脑的组织对比度 7,17,18。