了解人类大脑是 21 世纪的主要科学挑战之一。在此背景下,21 世纪初,法国原子能委员会 (CEA) 启动了一项计划,旨在构思和建造第一台以 11.7T 运行的人体 MRI 扫描仪。随后经过十多年的开发,磁体才得以交付,而又花了六年时间才完成调试,并最终获得监管机构的批准,在这种磁场下获取有史以来第一张活体人类大脑图像。我们部署了并行传输工具来缓解射频场不均匀性问题并控制特定吸收率。为了确保在如此高的场强下对人体成像的安全性,我们对志愿者进行了生理、前庭、行为和遗传毒性测量。数据显示没有不良影响的证据。前所未有的
1农业,食品和环境科学系理工学院(M. Raballo,Alessandro.vitali.vitali)@staff.univpm.it 2矿业开发与勘探系 Systems Science, Eth Zurich, Switzerland Arnadi.murtiyoso@usys.ethz.ch 4 Universit´E de Strasbourg, Save Strasbourg, Cnrs, Icube Laboratory Umr 7357, Photogrammetry and Geomatics and Geomatics Group, france arnadi.murtiyoso@insa-strasbourg.fr 5 Dragones Research Group, Escuela de Ingenier'农业Y Forestal(校园de Ponferrada),AV。astorga S/N,24400 Ponferrada,西班牙flor.alvarez@unileon.es 6 Hazi Fundazioa,Granja Modelo de arkaute,01192 Vitoria -Gasteiz,西班牙 - 西班牙-Acantero@hazi@hazi.hazi.es equhazi.es 7 imib -csic,spsic de miers de Mieres,astain,Astain,AST.ASTURIAS,ASTOLOL,ASTOLOL,ASTOLOL,RODBOLF,RODFOLF,RODFOLF,RODFOLF,RODBOLF,RODBOLF,RODBOLF。 Diego.laino)@CSIC.ES 8大学,Marthe的理工学院,民用,建筑工程和建筑学系(SAD)r.pierdicca@staff.univpm.it
摘要 对极重采样旨在生成共轭点位于同一行的归一化图像。这一特性使得归一化影像对于自动影像匹配、空中三角测量、DEM 和正射影像生成以及立体观看等许多应用都十分重要。传统上,归一化过程的输入媒体是帧相机捕获的数字影像。这些影像可以通过扫描模拟照片获得,也可以直接由数码相机捕获。与模拟相机相比,当前的数码帧相机提供的图像格式更小。在这方面,线阵扫描仪正在成为二维数码帧相机的可行替代品。然而,线阵扫描仪的成像几何比帧相机更复杂。一般而言,线阵扫描仪的成像几何会产生非直线的对极线。此外,根据忠实描述成像过程的严格模型对捕获的场景进行对极重采样需要了解内部和外部传感器特性以及物体空间的数字高程模型 (DEM)。最近,平行投影已成为一种替代模型,用于近似具有窄视场角的高空扫描仪的成像几何。与严格模型相比,平行投影模型不需要
配置条形码为扫描仪提供指令,以解析2D条形码中包含的数据。扫描仪将遵循这些说明,直到否则进行配置。例如,如果扫描了UOS配置条形码,则该扫描仪将准备接收并将UOS条形码解码到库存记录的适当字段中,直到扫描其他配置条形码为止。配置条形码也可以拆除以“重置”扫描仪,如果对库存管理系统,EHR或IIS的配置出现任何问题。请注意,配置条形码将与扫描仪制造商提供的设置条形码不同,如果需要重置,也可能需要撤销。
• 使用 OTS400/OTC400,最多可将 24 个扫描仪连接到 OPS,用于读取多达 6 个平面上的条形码。条形码扫描仪通过 CAN 总线/CanOpen 连接到 OTC400。预制连接电缆可用于将条形码扫描仪连接到 OTS400/OTC400。增量编码器和所需的触发信号也可以连接到 OTS400/OTC400。还提供其他可选输入。
阴影区域监测 第一个 Kilnscan 具有黄色视野,用于测量位于建筑物内部的窑炉部分的温度。可以注意到扫描仪与窑壳之间的距离仅为 4.3 米。由于 140° 视野扫描仪,实现了这一短瞄准距离限制。第二个和第三个扫描仪旨在扫描窑壳的同一部分,并特别解决沿着窑炉这一部分延伸的阴影区域问题。然后通过结合这两个扫描仪的数据重建热图像,消除阴影,从而完美地全面监测窑壳。
然而,导航的重大限制在于假设大脑和颅骨是刚性结构[6,5,23],但在手术过程中,由于 Kelly 等人 [8] 在 1986 年描述的脑移位现象,这限制了外科医生在术前图像和术中解剖结构之间能够实现的关联。 [14] 这是由于脑组织扭曲造成的,有几项研究记录了脑组织的手术操作、组织肿胀和脑脊液流失以及脑牵开器的使用 [4,13,17] 是造成这种与时间相关的动态时空事件的原因。 [25] 这会导致导航系统中的图像不正确,并可能使手术不准确。 脑移位现象可能发生在皮层和深层脑结构中 [5],这可能导致大脑重要区域的损伤,例如在胶质瘤手术中。 [28] 外科界尚未就导航本身是否能够改善手术结果达成共识,但认识到需要一个更准确的解决方案,而这一解决方案可以通过术中成像方式提供的实时图像来解决。
摘要:目前LiDAR以单点LiDAR为主,APD阵列和激光器阵列受限于出口,面阵LiDAR数量稀少。单点LiDAR发射激光后无法在地面形成只有一个激光点的扫描模式,所以必须有一套针对单点LiDAR的扫描装置。本文设计的扫描装置通过旋转折射棱镜在地面形成圆形扫描区域,同时形成锥形视场。目前船用LiDAR较多采用该类扫描仪,该类扫描仪的优点是:机械结构简单,运行平稳,飞行过程中可得到重叠的椭圆形扫描轨迹,增加了扫描密度。本文采用超低色散玻璃作为折射棱镜,在一定的激光频率范围内,折射棱镜对不同频率的激光折射效果几乎相同。仿真结果表明,该扫描仪可以作为普通LiDAR扫描仪使用,也可以作为双频LiDAR扫描仪使用。