摘要:本研究探讨了基于机器学习的中风图像重建在电容耦合电阻抗断层扫描中的潜力。研究了使用对抗神经网络 (cGAN) 重建的脑图像的质量。使用二维数值模拟生成监督网络训练所需的大数据。无撞击损伤和有撞击损伤的头部轴向横截面模型平均为 3 厘米厚的层,与传感电极的高度相对应。使用具有特征电参数的区域对中风进行建模,这些区域是灌注减少的组织。头部模型包括皮肤、颅骨、白质、灰质和脑脊液。在 16 电极电容式传感器模型中考虑了耦合电容。使用专用的 Matlab ECTsim 工具包来解决正向问题并模拟测量。使用数字生成的数据集训练条件生成对抗网络 (cGAN),该数据集包含健康患者和出血性或缺血性中风患者的样本。验证表明,使用监督学习和 cGAN 获得的图像质量令人满意。当图像对应于中风患者时,可以从视觉上区分,出血性中风引起的变化最为明显。继续进行图像重建以测量物理幻影是合理的。
摘要 目的 基于光学相干断层扫描 (OCT) 图像,开发一种 Vision Transformer 模型来检测糖尿病性黄斑病变 (DM) 的不同分期。方法 删除质量较差的图像后,从武汉大学人民医院眼科中心提取共 3319 张 OCT 图像,并按 7:3 的比例随机分成训练集和验证集。所有黄斑横断面扫描 OCT 图像均回顾性收集自 2016 年至 2022 年 DM 患者眼部。在收集的图像上分别标记 DM 的 OCT 分期,包括早期糖尿病性黄斑水肿 (DME)、晚期 DME、重度 DME 和萎缩性黄斑病变。训练基于 Vision Transformer 的深度学习 (DL) 模型来检测 DM 的四个 OCT 分级。结果 我们提出的模型可以提供令人印象深刻的检测性能。我们实现了 82.00% 的准确率、83.11% 的 F1 分数、0.96 的受试者工作特征曲线下面积 (AUC)。对早期DME、晚期DME、重度DME、萎缩性黄斑病变四种OCT分级检测的AUC分别为0.96、0.95、0.87、0.98,准确度分别为90.87%、89.96%、94.42%、95.13%,精密度分别为88.46%、80.31%、89.42%、87.74%,敏感度分别为87.03%、88.18%、63.39%、89.42%,特异度分别为93.02%、90.72%、98.40%、96.66%,F1评分分别为87.74%、84.06%、88.18%、88.57%。结论 我们基于 Vision Transformer 的 DL 模型在检测糖尿病的 OCT 分级方面表现出相对较高的准确率,这可以帮助患者进行初步筛查,以识别病情严重的人群。这些患者需要进一步检查以准确诊断,并及时治疗以获得良好的视力预后。这些结果强调了人工智能在未来协助临床医生制定糖尿病治疗策略方面的潜力。
摘要。在过去五年中,大多数变化在过去的十年中,对医学中AI应用的兴趣已大大增加。最近,使用计算机断层扫描(CT)图像的深度学习算法在心血管疾病(CVD)的预测和分类中的应用显示出令人鼓舞的结果。但是,在这一研究领域的显着进步与与可发现性(F),可访问性(a),互操作性(I),可重复使用性(R)相关的不同挑战有关。这项工作的目的是确定反复出现的缺失的公平相关特征,并评估用于预测/诊断CT图像中心血管疾病的数据和模型的公平程度。我们使用RDA(研究数据联盟)公平数据成熟度模型和Fairshake工具包评估了数据和模型的公平性。这一发现表明,尽管预计AI会为复杂的医疗问题带来破碎的解决方案,但数据/元数据/代码的可发现性,可访问性,互操作性和可重复性仍然是一个杰出的挑战。
抽象背景/旨在应用深度学习技术来开发人工智能(AI)系统,该系统可以根据光学相干断层扫描(OCT)黄斑图像来识别高近视患者的威胁性疾病。在这项横截面前瞻性研究中,从2012年至2017年开始,从1048名高山眼科中心(ZOC)获得的1048名近视患者获得了5505个合格的OCT黄斑图像,以开发AI系统。独立测试数据集包括从2019年1月至2019年5月在ZOC招募的91名近视患者获得的412张图像。我们采用了InceptionResnETV2体系结构来训练四个独立的卷积神经网络(CNN)模型,以识别高近视的以下四种威胁性的危及危险状况:视网膜菌,黄斑孔,视网膜脱离和病理肌反应型脉络膜脉络膜化。焦点损失用于解决类不平衡,并根据Youden指数确定最佳的操作阈值。在独立的测试数据集中结果,在所有条件下,接收器操作特征曲线下的区域均高(0.961至0.999)。我们的AI系统的敏感性等于甚至比视网膜专家的敏感性以及高特异性(大于90%)。此外,我们的AI系统为热图提供了透明且可解释的诊断。结论我们使用OCT黄斑图像来开发CNN模型来识别高近视患者的视力威胁性疾病。我们的模型具有可靠的敏感性和高特异性,可与视网膜专家相当,并且可以用于大规模的近视筛查和患者随访。
相对于计算机断层扫描(CT),磁共振成像(MRI)的软组织对比增加使其成为决定放射治疗(RT)的合适成像方法。当将MRI扫描用于治疗计划时,剂量计算和基于X射线的患者位置仍然需要CT扫描。这增加了工作量,由于图像注册间模式的必要条件,因此导致了不必要的,并且需要不必要的辐射。即使仅使用MR图像是有利的,但必须使用一种估计伪CT(PCT)的方式来生成电子密度映射和患者参考图像。因此,本文带来了一个有效的深度学习模型,可以使用以下步骤从MRI图像中生成合成的CT; a)在收集了CT和MRI扫描图像的数据中,b)使用图像进行预处理,以避免使用诸如Outier Emplier Empliering,数据平滑和数据归一化的技术避免异常和噪声,C)使用原理组件分析(PCA)和回归方法进行特征提取和选择,DCN和DCN(DCN)(DCN)(dcn)(dcn)(dcn)(dc)。此外,我们为此模型评估了DC,SSIM,MAE和MSE等指标。但是,我们建议的模型的精度为95%。关键字
摘要:随着时间的流逝,已为模式分类生成了无数的应用。几个案例研究包括参数分类器,例如多层感知器(MLP)分类器,这是当今使用最广泛的分类器之一。其他人使用非参数分类器,支持向量机(SVM),K-Nearest邻居(K-NN),幼稚的贝叶斯(NB),Adaboost和Random Forest(RF)。但是,仍然几乎没有针对人工智能(AI)的新趋势的工作,该趋势被称为可解释的人工智能(X-AI)。这种新趋势旨在使机器学习(ML)算法越来越简单且易于理解用户。因此,在这项工作中,在这项工作中,作者基于新型极简主义机器学习(MML)范式的实现以及更高的相关性属性选择算法,开发了一种新的模式分类方法,我们称之为DMeans。我们检查并比较了该方法的性能与MLP,NB,KNN,SVM,ADABOOST和RF分类器,以执行计算机断层扫描(CT)脑图像的分类任务。这些灰度图像的面积为128×128像素,并且数据集中有两个类别可用:CT无出血和CT,具有室内出血(IVH)的CT,使用剩余的交叉验证方法对它们进行了分类。大多数通过一对一的交叉验证测试的模型的精度在50%至75%之间,而灵敏度和灵敏度在58%至86%之间。使用我们的方法进行的实验与观察到的最佳分类器相匹配,其精度为86.50%,并且它们的表现优于特定的所有最先进的算法,而91.60%的算法的表现。这种性能是通过简单且实用的方法齐头并进的,这些方法与这种易于解释的算法的趋势并驾齐驱。
COVID-19 疫情引起了大数据分析师和人工智能工程师的关注。将计算机断层扫描 (CT) 胸部图像分类为正常或感染需要密集的数据收集和创新的 AI 模块架构。在本文中,我们提出了一个平台,该平台通过检查 CT 胸部扫描图像,涵盖 COVID-19 正常和异常方面的多个分析和分类级别。具体来说,该平台首先基于可靠的图像集合扩充要在训练阶段使用的数据集,分割/检测图像中的可疑区域,并分析这些区域以输出正确的分类。此外,在选择最适合我们研究的模块后,我们结合了 AI 算法。最后,与文献中的其他技术相比,我们展示了该架构的有效性。所得结果表明,所提架构的准确率为 95%。