1美国田纳西州纳什维尔市范德比尔特大学医学中心放射与放射科学系2美国田纳西州纳什维尔大学医学中心,范德比尔特大学成像科学研究所,美国田纳西州纳什维尔市3卡迪夫大学脑研究中心,加迪夫大学大脑研究中心,加迪夫大学,卡迪夫大学,王后科学,加里夫大学。工程,范德比尔特大学,田纳西州纳什维尔市,美国6电气工程和计算机工程,范德比尔特大学,田纳西州纳什维尔,美国田纳西州 *中枢神经系统的组织微观结构。大多数实验设计采样了大量扩散加权方向以计算球形平均信号,但是,对这些方向的子集进行采样可能会提高扫描效率并启用扫描时间减少,或者可以减少采样更多扩散权重。在这里,我们旨在确定稳健测量球形平均信号所需的最小梯度方向数。我们使用计算机模拟来表征测得的球形平均信号的变化,这是梯度方向数量的函数,同时还研究了扩散加权(B值),信号 - 噪声比率(SNR),可用硬件和球形平均拟合策略的影响。然后,我们利用大脑和脊髓中的经验获得的数据来验证模拟,显示实验结果与模拟良好一致。我们通过提供直观的查找表来概括这些结果,以促进确定可靠的球形均值测量所需的最小数量的采样方向,并根据SNR和实验条件提供建议。关键字:球形平均信号,最佳采样,音量分数,扩散性简介
钙化描述/背景冠状动脉钙冠状动脉钙(CAC)与冠状动脉疾病(CAD)有关。快速计算机断层扫描(CT)扫描仪的开发允许在临床实践中测量CAC。冠状动脉钙已经在几种临床环境中进行了评估。最广泛的研究指示是使用CAC在亚临床疾病患者中预测未来CAD的风险,其目的是实施适当的降低风险降低疗法(例如他汀类药物,汀类药物治疗,生活方式修改)以改善结果。此外,在可能与CAD一致的症状患者中评估了CAC,但诊断尚不清楚。检测电子梁计算机断层扫描(EBCT;也称为超快CT)和螺旋CT(或螺旋CT)可以用作由于更快的吞吐量而导致的常规CT扫描的替代方法。在这两种方法中,图像采集的速度都为他们成像动人的心脏赋予了独特的价值。快速图像采集时间实际上消除了与心脏收缩有关的运动伪影,从而可以在心外膜冠状动脉中可视化钙。电子束计算机断层扫描软件允许量化钙面积和密度,并将其转化为钙评分。钙评分已被研究为检测CAC的技术,既是有症状的患者的诊断技术,都可以排除症状的动脉粥样硬化病因,或者在无症状患者中,作为CAD风险分层的辅助方法。电子束计算机断层扫描和多探测器CT最初是测量CAC的主要快速CT方法。进行CAC测量的快速CT研究需要10到15分钟,只需要几秒钟的扫描时间。最近,计算机断层扫描血管造影已用于评估冠状动脉钙。由于EBCT和计算机断层扫描在测量冠状动脉钙中的基本相似性,因此预计计算机断层扫描血管造影可提供与EBCT相似的冠状动脉钙的信息。
在获取磁共振(MR)图像中,较短的扫描时间会导致更高的图像噪声。因此,使用深度学习方法自动图像降解是高度兴趣的。在这项工作中,我们集中于包含线状结构(例如根或容器)的MR图像的图像。特别是,我们研究了这些数据集的特殊特征(连接性,稀疏性)是否受益于使用特殊损失功能进行网络培训。我们特此通过比较损失函数中未经训练的网络的特征图将感知损失转换为3D数据。我们测试了3D图像降级的未经训练感知损失(UPL)的表现,使MR图像散布脑血管(MR血管造影-MRA)和土壤中植物根的图像。在这项研究中,包括536个MR在土壤中的植物根和450个MRA图像的图像。植物根数据集分为380、80和76个图像,用于培训,验证和测试。MRA数据集分为300、50和100张图像,用于培训,验证和测试。我们研究了各种UPL特征的影响,例如重量初始化,网络深度,内核大小以及汇总结果对结果的影响。,我们使用评估METIC,例如结构相似性指数(SSIM),测试了四个里奇亚噪声水平(1%,5%,10%和20%)上UPL损失的性能。我们的结果与不同网络体系结构的常用L1损失进行了比较。我们观察到,我们的UPL优于常规损失函数,例如L1损失或基于结构相似性指数(SSIM)的损失。对于MRA图像,UPL导致SSIM值为0.93,而L1和SSIM损耗分别导致SSIM值分别为0.81和0.88。UPL网络的初始化并不重要(例如对于MR根图像,SSIM差异为0.01,在初始化过程中发生,而网络深度和合并操作会影响DeNo的性能稍大(5卷积层的SSIM为0.83,而核尺寸为0.86,而5卷积层的0.86 vs. 0.86对于根数据集对5卷积层和5卷积层和内核尺寸5)。我们还发现,与使用诸如VGG这样的大型网络(例如SSIM值为0.93和0.90)。总而言之,我们证明了两个数据集,所有噪声水平和三个网络体系结构的损失表现出色。结论,对于图像
使用改进的序贯概率比检验进行共振成像 Sarah JA Carr 1,2 、Weicong Chen 3 、Jeremy Fondran 4 、Harry Friel 5 、Javier Sanchez-Gonzalez 6 、Jing Zhang 4 和 Curtis Tatsuoka 4,2,* 1. 英国伦敦国王学院精神病学、心理学和神经科学研究所神经影像学系 2. 美国俄亥俄州克利夫兰凯斯西储大学神经病学系 3. 美国俄亥俄州克利夫兰凯斯西储大学计算机与数据科学系 4. 美国俄亥俄州克利夫兰凯斯西储大学人口与定量健康科学系 5. 美国俄亥俄州高地黑兹飞利浦医疗集团 6. 西班牙马德里飞利浦医疗集团 *通讯作者:Curtis Tatsuoka 10900 Euclid Avenue 凯斯西储大学克利夫兰, OH,美国 44106 电子邮件:cmt66@case.edu 关键词:实时 fMRI、自适应 fMRI、动态实验、SPRT、提前停止 摘要简介:功能性磁共振成像 (fMRI) 通常需要较长的扫描时间以确保可以检测到相关的大脑活动。然而,过度的实验会导致许多不良影响,例如学习和/或疲劳影响、受试者不适、过多的运动伪影以及无法持续关注任务。因此,过长的实验会对信号质量和准确的体素激活检测产生不利影响。在这里,我们建议使用一种新颖的统计驱动方法对实时 fMRI 进行动态实验,当观察到足够的统计证据来评估与任务相关的激活时,该方法会提前停止。方法:对 12 名健康青少年受试者和 11 名极度早产 (EPT) 青少年受试者的数学 1-back 任务的 fMRI 扫描实施基于一般线性模型 (GLM) 的体素级序贯概率比检验 (SPRT) 统计数据。该方法基于似然比,并允许基于统计误差阈值进行系统性早期停止。我们采用两阶段估计方法,可以准确估计误差方差。报告了不同第一阶段长度的早期停止性能,并将激活结果与完整持续时间进行比较。最后,对两个早期停止的模型进行组比较
摘要目的确定在单次注射对比剂期间使用动态自旋和梯度回波平面成像 (动态 SAGE-EPI) 在胶质瘤中同时获得的动态磁化率对比 (DSC)、动态对比增强 (DCE) 和对比剂漏泄效应得出的定量图的可行性和生物学相关性。材料和方法 使用动态 SAGE- EPI 对 38 例增强脑胶质瘤患者进行前瞻性成像,并计算传统 DSC 指标(归一化相对脑血流量 [nrCBV]、信号恢复百分比 [PSR])、DCE 指标(体积转移常数 [ K trans ]、血管外隔室 [ ve ])和泄漏效应指标:Δ R 2,ss *(反映 T 2 *-泄漏效应)、Δ R 1,ss(反映 T 1 泄漏效应)和示踪剂平衡时的横向弛豫率(TRATE,反映 Δ R 2,ss * 和 Δ R 1,ss 之间的平衡)。在患者亚组(初治 [TN] vs 复发 [R])和生物学特征(IDH 状态、Ki67 表达)之间比较了这些指标。结果 在 IDH 野生型神经胶质瘤(IDH wt - 即胶质母细胞瘤)中,先前接受治疗导致 TRATE 较低(p = 0.002),以及 PSR 较高(p = 0.006)、K trans 较高(p = 0.17)、Δ R 1,ss 较高(p = 0.035)、ve 较高(p = 0.006)和 ADC 较高(p = 0.016)。在 IDH 突变型神经胶质瘤(IDH m)中,先前接受治疗导致 K trans 和 Δ R 1,ss 较高(p = 0.026)。在 TN 神经胶质瘤中,动态 SAGE-EPI 指标往往受 IDH 状态的影响(p 范围为 0.09–0.14)。高于 142 mM −1 s −1 的 TRATE 值仅见于 TN-IDH wt ,而在 TN-胶质瘤中,该截止值作为 Ki67 > 10% 的预测因子具有 89% 的敏感性和 80% 的特异性。结论动态 SAGE-EPI 能够同时量化脑肿瘤灌注和通透性,以及通过单次注射造影剂绘制与细胞结构 (TRATE) 和血脑屏障破坏 (Δ R 1,ss) 相关的新指标。临床相关性声明使用动态 SAGE-EPI 同时进行 DSC 和 DCE 分析可减少扫描时间和造影剂剂量,分别减轻对成像方案长度和钆不良反应和积累的担忧,同时提供反映血脑屏障破坏和肿瘤组织细胞结构的新型泄漏效应指标。要点•传统上,脑肿瘤的灌注和通透性成像需要两次单独的造影剂注射和采集。 • 动态自旋和梯度回波平面成像可同时进行灌注和通透性成像。 • 动态自旋和梯度回波平面成像可提供新的图像对比度,反映血脑屏障破坏和细胞结构特征。