。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2023年7月15日。; https://doi.org/10.1101/2023.07.14.549076 doi:biorxiv Preprint
1 光学科学中心和先进材料表面工程 (SEAM) ARC 培训中心,斯威本科技大学理学院,霍索恩,维多利亚州 3122,澳大利亚 2 墨尔本纳米制造中心,151 Wellington Road,Clayton,维多利亚州 3168,澳大利亚 3 斯威本科技大学健康科学学院、心理科学系,霍索恩,维多利亚州 3122,澳大利亚 4 光子学与纳米技术研究所,维尔纽斯大学物理学院,Saul˙etekio al. 3,LT-10257 维尔纽斯,立陶宛 5 拉筹伯大学心理科学学院,墨尔本,VIC 3086,澳大利亚 6 WRH 计划国际研究前沿倡议 (IRFI),东京工业大学,长津田町,绿区,横滨 226-8503,神奈川,日本 * 通讯地址:weerasuriya@gmail.com (CW);soonhockng@swin.edu.au (SHN);sjuodkazis@swin.edu.au (SJ)
1 1高级材料的地面工程中心和电弧培训中心,Swinburne技术学院,Swinburne技术学院,霍斯纳恩大学,VIC 3122,VIC 3122,澳大利亚2墨尔本纳米制造中心,惠灵顿路151号,惠灵顿路151号,澳大利亚3168,VIC 3168,澳大利亚312 Yealth 3 312澳大利亚4个光子学研究所和纳米技术学院,物理学院,维尔纽斯大学,索尔伊蒂基奥。 3,LT-10257 Vilnius,立陶宛5心理学科学学院,La Trobe University,墨尔本,VIC 3086,澳大利亚6 WRH计划国际研究边界计划(IRFI),东京技术研究所,Nagatsuta-Cho,Midori-Ku,Midori-Ku,Yokohama 226-8503503503,KANAGA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA, weerasuriya@gmail.com(c.w. ); suonhockng@swin.edu.au(S.H.N. ); sjuodkazis@swin.edu.au(S.J.)1高级材料的地面工程中心和电弧培训中心,Swinburne技术学院,Swinburne技术学院,霍斯纳恩大学,VIC 3122,VIC 3122,澳大利亚2墨尔本纳米制造中心,惠灵顿路151号,惠灵顿路151号,澳大利亚3168,VIC 3168,澳大利亚312 Yealth 3 312澳大利亚4个光子学研究所和纳米技术学院,物理学院,维尔纽斯大学,索尔伊蒂基奥。3,LT-10257 Vilnius,立陶宛5心理学科学学院,La Trobe University,墨尔本,VIC 3086,澳大利亚6 WRH计划国际研究边界计划(IRFI),东京技术研究所,Nagatsuta-Cho,Midori-Ku,Midori-Ku,Yokohama 226-8503503503,KANAGA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA,KANAGAA, weerasuriya@gmail.com(c.w.); suonhockng@swin.edu.au(S.H.N.); sjuodkazis@swin.edu.au(S.J.)
近年来,随着人们对量子信息处理研究的兴趣和努力[1,2],在构建和控制大规模量子系统方面取得了令人瞩目的进展,一系列物理系统包括但不限于超导电路[3-5]、线性光学[6,7]、离子阱[8,9]和超冷原子[10]。虽然创建和操作一个拥有大约 100 个甚至 1000 个量子比特的大规模系统已经现实[11,12],但如何测量这样的多体态并证明系统中任意两部分之间的相关性仍然是一个问题。由于量子比特的量子特性,量子比特所携带的信息不能通过一次测量读出[13]。相反,需要对一个量子态用多组基进行多次测量,才能重建表示该状态的密度矩阵[14]。随着系统中量子比特数量的增加,所需测量的数量呈指数增长 [15],导致不可接受的时间复杂度,这可能会破坏即使是中等规模的系统稳定性。事实上,对于只有 10 个量子比特的系统,全状态断层扫描 (FST) 已经相当困难 [16]。在这一挑战的推动下,人们提出了各种协议来降低时间复杂度。一些协议为具有特殊结构的某些量子态提供了优势 [17]。一些协议可以更高效地估计未知状态,但它们需要量子非破坏性测量,而这在当今的实验中仍然无法实现 [18]。一个更现实的想法是通过重建简化的密度矩阵来检索有限但关键的信息
该研究招募了 1100 名 2 岁以下的儿童,以评估学龄前儿童。其他纳入和排除标准均符合 PECARN 研究。人口统计学、损伤细节、病史和神经学评估等数据用于统计评估和 ML 算法的创建。临床重要 TBI (ciTBI)、CT 上的 mTBI 和对照组的儿童人数分别为 28、30 和 1042。除损伤机制的严重程度外,所有非参数预测因子均显示出对照组和需要住院治疗的临床重要 TBI (csTBI:CT 上的 ciTBI+mTBI) 之间的统计学意义。三组之间的比较也显示出所有预测因子的显著性 (p < 0.05)。这项研究表明,用于预测是否需要进行 CT 扫描的监督 ML 可以以 95% 的准确率生成。它还揭示了决策树中每个预测因子的重要性,尤其是“生命天数”。
Results: The independent factors for differentiating lung cancers from benign solid pulmonary nodules included diameter, Lung-RADS categorization of diameter, volume, Zeff in arterial phase (Zeff_A), IC in arterial phase (IC_A), NIC in arterial phase (NIC_A), Zeff in venous phase (Zeff_V), IC in venous phase (IC_V), and NIC in venous phase (NIC_V)(全p <0.05)。由直径和NIC_V组成的IC_V,NIC_V和组合模型表现出良好的诊断性能,AUC为0.891、0.888和0.893,它们优于直径,直径,直径,体积,体积,Zeff_a和Zeff_A和Zeff_V(Zeff_A和Zeff_V(所有p <0.001))的直径分类。IC_V,NIC_V和组合模型的灵敏度高于IC_A和NIC_A的灵敏度(全部p <0.001)。与IC_V(P = 0.869)或NIC_V(P = 0.633)相比,组合模型没有增加AUC。
方法。TVB允许标准化的大规模结构连通性(SC)的建模和整个脑动力学的模拟。我们将TVB与淀粉样蛋白β的因果关系模型相结合,以及与支持矢量机和随机森林的机器学习分类。根据各个AV-45 PET扫描量化的淀粉样蛋白β负担为局部激发/抑制平衡的参数提供了信息。我们使用磁共振成像(MRI),正电子发射断层扫描(PET,特别是淀粉样蛋白β(ABETA)结合示踪剂AV-45-PET和TAU蛋白(TAU)结合AV-1451-PET)来自阿尔茨海默氏病神经IMIMIMIMIMIMIMIIMEGIATIATIVE Initiative Initiative Intiative Intiative Intiative Intiative Stre ni3(adni3)。正在研究模拟局部田间电位(LFP)的频率组成,因为他们使用支持载体机和随机森林分类器在阿尔茨海默氏病(AD),轻度认知障碍(MCI)和健康对照组(HC)之间对个体进行分类。
图1冠状组织学切片(Kluver Barrera染色)和Ex Vivo 0.2×0.2×0.2×0.2 mm 3 MRI在海马头(A,B),身体(C,D)和尾部(E,G)的同一主题中。组织学部分中的黑线划分了子场之间的细胞结构边界,该专家以全0.5×0.5μm2分辨率分析数字组织学部分的专家追踪。绿色箭头指向辐射分子(SRLM)层,在MRI中显得不高。请注意,Cornu氨和下调的宽度取决于SLRM的位置,SLRM的位置是分割子场(黄线)的关键地标。此外,在离体MRI上,可以看到牙槽(外部低位带,红色箭头),这有助于划定海马的外边界,尤其是其数字(白色星号)。ca,Cornu Ammonis,sub,subiculum(包括前和副副总统),DG,Dentate Gyrus
摘要 本文介绍了中程地面激光扫描 ( TLS ) 的起源和发展,主要跨越从 20 世纪 50 年代到本文出版之时。特别关注了将场景的物理尺寸记录为点云的硬件和软件的发展。这些发展包括中程精度、重复性和分辨率参数——在记录距离最远一公里的建筑物和景观尺度的物体时,精度达到毫米和厘米级。本文分为两部分:第一部分从早期的空间和国防应用开始,第二部分探讨了 20 世纪 90 年代围绕 TLS 技术形成的测量应用。具有讽刺意味的是,中程 TLS 的起源始于空间和国防应用,这影响了传感器和通过自动驾驶汽车进行信息处理的发展。其中包括行星探测器、航天飞机、机器人和陆地车辆,这些车辆设计用于在太空和战区等恶劣环境中进行相对导航。在撰写本文的 10 年期间,我们咨询了中端 TLS 社区的关键人物。多语言和多学科文献综述(包括用中文、英文、法文、德文、日文、意大利文和俄文撰写或制作的媒体)也是本研究不可或缺的一部分。
聚焦离子束剥离和环形铣削是获取原子探针断层扫描 (APT) 实验和透射电子显微镜中特定位置样本的最常用方法。然而,该技术的主要限制之一来自高能离子束造成的结构损伤和化学降解。这些方面对于高灵敏度样本尤其重要。在这方面,低温条件下的离子束铣削已成为一种成熟的损伤缓解技术。在这里,我们实施了一种低温聚焦离子束方法,以从效率为 19.7% 的四重阳离子钙钛矿基太阳能电池装置中制备用于 APT 测量的样本。与室温 FIB 铣削相比,我们发现低温铣削在产量和成分测量(即卤化物损失)方面显著改善了 APT 结果,这两者都与 APT 样本内缺陷较少有关。基于我们的方法,我们讨论了钙钛矿基太阳能电池材料可靠原子探针测量的前景。还深入了解了组成钙钛矿材料的有机-无机分子的场蒸发行为,目的是扩大 APT 实验对复杂有机金属材料纳米表征的适用性。