我们提出了一种流程,从稀疏范围激光扫描获得的点云中重建建筑物的完整几何形状。由于室外环境的可达性有限,对建筑物的每个面进行完整、充分的扫描往往是不可能的。我们的流程处理由平面构成的建筑,并根据不完整的扫描忠实地构建一个低复杂度的多面体。该流程首先根据点云识别平面区域,然后继续计算平面交点和角 1 ,最后生成完整的多面体。在流程中,设计了几种基于多面体几何假设的算法来执行数据聚类、边界检测和面提取。我们的系统提供了一个方便的用户界面,但最大限度地减少了用户干预的必要性。我们通过模拟真实的建筑物来展示我们系统的能力和优势。
随着 CMOS 技术缩放即将达到基本极限,对具有较低工作电压的节能器件的需求巨大。负电容场效应晶体管 (NCFET) 具有放大栅极电压的能力,成为未来先进工艺节点的有希望的候选者。基于铁电 (FE) HfO 2 的材料具有令人印象深刻的可扩展性和与 CMOS 工艺的兼容性,显示出将其集成到 NCFET 中以实现纳米级高性能晶体管的可行性。由于引入了 NC 效应,基于 HfO 2 的 NCFET 中的短沟道效应 (SCE) 与已经经过广泛研究的传统器件不同 [1]。具体而言,漏极诱导势垒降低 (DIBL) 在决定 SCE 的严重程度方面起着关键作用,在 NCFET 中表现出相反的行为。尽管人们已认识到施加电压对 NCFET 性能的影响 [ 2 ],但栅极电压扫描范围(V GS 范围)对先进短沟道 NC-FinFET 中的 DIBL 的影响仍然缺乏研究。
具有较大的扫描范围,精细的角度分辨率和高灵敏度,Picoscan100 2D激光雷达传感器(TIM系列的继任者)正在设定新标准。它还可靠地检测到小物体和深色物体。传感器提供精确的测量数据和功能,整合了通过各种通信接口传输的数据的进一步处理。配备了多回波技术的紧凑型Picoscan100具有坚固的外壳,即使在恶劣的环境条件下,也可以确保可靠的测量重新设置。picoscan100(可分为三种变体)也可以通过其他功能进行定制。
摘要:全金属 3D 打印技术可以为不同应用构思新结构。本文探讨了首次采用全金属 3D 单元格拓扑结构执行宽角度阻抗匹配层的潜力。推导出一种针对斜入射的新等效电路,可以很好地估计线性极化辐射场主扫描平面内扫描范围(θ = [0 ◦, 55 ◦])的单元响应。该分析模型随后用于开发通用天线的宽角度阻抗匹配设计方法。该方法已在实践中测试,以匹配 18 GHz 的金属喇叭制成的相控阵。在 H 平面的角度 θ > 35 ◦ 的模拟中获得了 5 dB 的改善。
本环境扫描介绍了有关Covid-19-19的灰色文献的结果,该文献是由国际和加拿大司法管辖区出版的社区聚集生活环境的疫苗交流策略和资源。搜索策略是在2021年1月18日至3月19日之间进行的。通过在线搜索使用Google自定义搜索引擎为加拿大卫生部门和机构,美国(美国)政府网站以及来自澳大利亚,欧洲和英国(英国)的国际公共卫生资源(英国)的国际公共卫生资源获得记录。搜索策略包括与扫描范围相关的关键概念有关的关键词,可应要求提供完整策略。每次搜索的前100个结果均已筛选与社区聚集生活环境中的员工或客户的COVID-19疫苗通信资源相关,以及可以应用于这些环境的更广泛的指导。为长期护理,退休住宅和惩教设施量身定制的资源被排除在外。
色谱柱:HALO 1000Å C4, 2.7 µm, 2.1 x 150 mm 部件号:92712-714 流动相 A:10 mM 二氟乙酸 (DFA) 水溶液 流动相 B:10/90 水/乙腈中的 10 mM 二氟乙酸 梯度:10 分钟内 B 从 32% 变为 42% 流速:0.35 mL/min。压力:184 bar 温度:80 °C 检测:280 nm 进样量:1 µL 2 mg/mL 曲妥珠单抗(糖基化/去糖基化) 样品溶剂:0.1% DFA 溶于 70/30 水/乙腈 LC 系统:Shimadzu Nexera MS 测试条件: MS 系统:Thermo Fisher Orbitrap VelosPro ETD 扫描时间:6 µscans/250 ms 最大进样时间 扫描范围:1800 至 4000 m/z MS 参数:正离子模式,ESI 在 +4.0 kV,225°C 毛细管
以及其他水体特性已使用光谱查找表 [7] 进行处理,其中前向辐射传输模型(如 Hydrolight [8])会针对不同的水柱特性、深度和底部类型重复执行。为了全面起见,这些查找表必须很大,并且可能需要针对特定的海岸类型进行调整,因为底部类型和水特性可能会因海岸类型而有很大差异。高光谱数据的一个吸引人的特征是,除了水深测量检索之外,它还能够同时满足多种用途。光检测和测距 (LIDAR) 也被广泛用于检索水深测量数据。LIDAR 的优势在于它是一种主动传感器,可以在较深的水域提供更高的精度,但是,与典型的机载高光谱传感器相比,诸如扫描水文作业机载激光雷达调查 (SHOALS) [4] 之类的 LIDAR 系统必须在非常低的高度飞行,并且扫描范围相对较小。在非常浅的水域(深度小于 2 米)中,LIDAR 系统通常无法提供可靠的检索,无法解决底部和表面回波之间的差异。在本文中,我们专注于这种非常浅的水域,特别是从可以假设相对简单的反射模型的光谱范围中检索水深。与可见光波长的反射率相比,必须仔细考虑水柱的所有贡献,近红外波长反射率(800nm 以上)主要取决于水的吸收率和深度,以及底部反射率,水柱成分起次要作用。
全身PET/CT覆盖整个患者的一个床位,例如UExplorer®,代表了成像技术方面的重大进步,满足了许多临床和研究需求,同时还提出了新的挑战。但是,采用这项技术并非没有障碍。由于其构造所需的晶体量,这些系统的成本较高。也存在与扫描仪的物理大小相关的实际考虑因素,可以适合大多数但不是全部PET/CT套件。因此,联合成像考虑了临床需求,技术规格,房间尺寸以及开发全身系统的成本。在考虑能够在单床位置从头部扫描到大腿中部的全身宠物/ CT系统的必要规格时,有必要查看成人人群的平均高度。男性的中位高度为178.4厘米,女性为164.7 cm 1-表明,很大一部分患者人群可能不会在一次扫描范围(100 cm)的扫描范围内完全覆盖。(图1)这尤其正确,因为您认为灵敏度在视野边缘在头部和骨盆区域的边缘下降。此限制可能导致需要多次扫描通行证,这引入了注册错误的潜力并增加了整体扫描时间。UMI Panorama™GS的长轴向视野为148厘米,有效地解决了这个问题,从而使大多数人可以从顶点到大腿中部的覆盖范围。对于总体和全身宠物系统,需要克服技术挑战,以解决视差,散射,随机物,以在较大的轴向视野(AFOV)(AFOV)(AFOV)中具有检测器效率并管理它们生成的实质数据。
摘要 多功能、可部署和可打包天线对于许多应用都非常重要,包括无人机、卫星通信(例如立方体卫星)和通用机载和星载通信系统。值得注意的是,这种天线为上述应用提供了新功能。在本文中,我们介绍了关于可折叠和物理可重构天线的新兴研究,这些天线可以改变其形状以适应和重新配置其电磁性能(例如工作频率、带宽、极化、波束宽度等)。 1. 简介 可重构、可调、多功能、可部署的天线系统已广泛用于支持无线通信系统的多种服务。电气和机械重构方法已经得到开发并应用于机载和星载系统的各种应用,例如通信、侦察、传感和能量收集 [1],[2]。最近推出的一类新的物理可重构天线是折纸天线 [3]。与传统天线相比,折纸天线具有独特的优势,例如性能可重构、可调性和高效存放。它们固有的电磁和机械多功能行为使它们适合便携式军事和太空应用,这些应用对空间要求严格(例如,小型卫星平台的空间限制)。此外,折纸天线变形的能力使得开发具有前所未有和变革性能力的新型电磁 (EM) 系统成为可能,例如:(a) 天线可以改变其几何形状,以根据时间调整其性能并实现多功能性,(b) 2-D 和 3-D 天线阵列可以改变其覆盖面积、形状和/或元件分离,以实现最佳波束成形、波束控制和扫描范围,以及 (c) 可重构频率选择表面可以改变其性能以支持可调和多功能天线和阵列的操作(见图 1)。[4] 中可以找到有关折纸天线和可展开电磁结构的最新评论。