在使用自我产生的信号的如此称为活跃的传感器中,声纳传感器的实现比LIDAR和雷达更具挑战性,部分原因是它们有限的角度传感场。对此挑战的一种常见解决方案是扫描传感器,该传感器通过连续测量扫描角度范围。然而,扫描传感器对声纳特别概率,因为声速相对较慢和声纳头的惯性。对蝙蝠行为的研究表明,蝙蝠可以在小组飞行过程中窃听其特异性。换句话说,他们将自己的活跃声纳收集的信息与他们通过被动倾听同龄人收到的信息融合在一起。由于蝙蝠非常擅长使用声纳,因此这种行为激发了对融合积极和被动声纳是否可以解决实现声纳传感器的挑战的调查。定义了融合传感的模型,并使用数值模拟来回答同时定位和映射的测试床问题(SLAM)。模拟结果表明,当活动声纳和相关噪声的角度范围相对较小时,机器人在解决大满贯方面的性能就会得到改善。