机械微环境(例如细胞拥挤)的动态变化调节谱系命运以及细胞增殖。尽管已经对增殖接触抑制的调节机制进行了广泛的研究,但尚不清楚细胞拥挤如何引起谱系规范。在这里,我们发现众所周知的癌基因ETS变体转录因子4(ETV4)是将机械微环境和基因表达联系起来的分子传感器。在人类胚胎干细胞不断增长的上皮中,细胞拥挤动力学被转化为ETV4表达,是未来谱系命运的预案例。通过细胞拥挤的灭活开关的ETV4灭活,使人胚胎干细胞上皮细胞中神经外胚层分化的潜力。从机械上讲,细胞拥挤会使整联蛋白 - 肌球蛋白途径失活,并阻止成纤维细胞生长因子受体(FGFRS)的内吞作用。中断的FGFR内吞作用可通过ERK失活引起ETV4蛋白稳定性的明显降低。数学建模表明,人类胚胎干细胞上皮细胞密度的动力学精确地决定了时空ETV4表达模式,因此,谱系发育的时机和几何形状。我们的发现表明,干细胞上皮中的细胞拥挤动力学使用ETV4作为关键机械传感器驱动时空谱系规范。
尽管扭矩器看起来是相对简单的设备,但它们需要精心设计和精心组装。我们的资格和验收测试确保无论是在地面还是在轨道上,扭矩器几乎都不会出现性能下降。扭矩器最关键的部件——其核心材料——经过处理,以确保最佳磁性。每个单元都完全封装,除核心外,均由非磁性航天级组件制成。