点的扭转角可以通过改变费米能量、拓扑绝缘体收缩宽度和量子阱带隙来进行调控。27但目前还没有关于分子器件扭转角的系统研究。本文基于非平衡格林函数(NEGF)结合密度泛函理论(DFT),28,29研究了由两个V型锯齿边石墨烯纳米带(GNR)电极连接不同扭转角的CuPc分子构成的CuPc分子器件的量子输运性质。通过改变扭转角可以控制器件的局域自旋态和相关的量子输运性质。结果表明,扭转双层CuPc分子(TTBCPM)的HOMO-LUMO能隙、自旋滤波效率(SFE)和自旋相关电导随扭转角变化。当q较大时,电导和SFE的变化趋势几乎相反。当q=0时电导最大,当q=60时SFE最大,提出了这些现象的物理机制,并通过分析透射光谱、分子能级谱和散射态,进一步理解了具有扭转角的量子传输现象。
然而,确定 RNA 结构已被认为是一项巨大的挑战,甚至被认为比蛋白质结构预测更困难 [26]。原因很简单,因为 RNA 分子的灵活性。蛋白质分子每个残基上有三个扭转角,产生的多样性足以使结构预测变得困难,而 RNA 分子每个核苷酸上都有七个扭转角 [18]。因此,RNA 分子在允许的三级结构方面具有组合爆炸式增长。由于构象样本空间很大,旨在随机抽样并选择自由能最低的分子的传统蒙特卡罗方法往往无法在合理的时间内收敛。为了解决这个问题,部分由于最近使用 AlphaFold [13] 在蛋白质结构预测方面取得的成功,人们提出了基于深度学习的方法 [19,23]。这些方法在结构预测方面表现出良好的效果。利用 DiffRNAfold,我们提出了一个框架,将 RNA 结构生成和设计向前迈进了一步。
薄壁结构 – 机翼;机身;尾翼;薄壁近似。金属材料 – 材料化学;成型;轻质合金;超级合金。复合材料 – 混合规则;层压板理论;制造;功能复合材料。航空航天结构部件分析 – 弯曲;剪切;扭转;组合载荷;应力;扭转角;挠度;疲劳;断裂。无损检测 – 超声波检测;压电换能器;导波检测;相控阵扫描;结构健康监测。有限元分析 – 一维元素;二维元素;三维元素;高阶元素;静态分析;动态分析。
近几十年来,治疗性肽已被证明具有巨大的药用价值和潜力。然而,人工智能辅助肽药发现的方法尚未充分探索。为了填补这一空白,我们提出了一种基于环面流形上的条件流匹配的靶标感知肽设计方法(PPF LOW),为肽结构设计建模扭转角的内部几何形状。此外,我们建立了一个名为PPBench2024的蛋白质-肽结合数据集,以填补基于结构的肽药物设计任务的海量数据空白并允许深度学习方法的训练。大量实验表明,与基线模型相比,PPF LOW 在肽药物生成和优化任务中达到了最先进的性能,并且可以推广到包括对接和侧链包装在内的其他任务。
图2:基于扭转角的主成分分析(PCA),TRP型栅格和α-突触核蛋白的自由能表面(FES)。(a)和(d)分别沿TRP-CAGE和α-类核蛋白的整个分子动力学(MD)模拟数据集沿第一个两个主要成分(PC-1和PC-2)显示了2D FES图。(b)和(e)使用仿真数据的子集描绘了FES图,相当于TRP -cage的总数据的10%,而α-突触核蛋白的50%。与完整数据集相比,这些子集突出了采样自由能表面的稀疏性。(c)和(f)介绍了由DDPM训练的模型产生的FES图,这些模型在还原的子集上进行了训练。值得注意的是,DDPM生成的FES图与完整数据集的FES相似,并有效地采样了(b)和(e)中观察到的稀疏区域。
近几十年来,治疗性肽已被证明具有巨大的药用价值和潜力。然而,人工智能辅助肽药发现的方法尚未充分探索。为了填补这一空白,我们提出了一种基于环面流形上的条件流匹配的靶标感知肽设计方法(PPF LOW),为肽结构设计建模扭转角的内部几何形状。此外,我们建立了一个名为PPBench2024的蛋白质-肽结合数据集,以填补基于结构的肽药物设计任务的海量数据空白并允许深度学习方法的训练。大量实验表明,与基线模型相比,PPF LOW 在肽药物生成和优化任务中达到了最先进的性能,并且可以推广到包括对接和侧链包装在内的其他任务。
Moiré超级晶格在Van der Waals的异质结构中的扭曲工程可以操纵山谷中层Incepitons(IXS)的山谷物理学,为下一代谷化设备铺平了道路。然而,到目前为止,在电气控制的异质结构中尚未研究对山谷极化上激素电位的扭曲角度依赖性控制,需要探索下面的物理机制。在这里,我们证明了莫伊尔时期的极化切换和山谷极化程度的依赖性。我们还找到了揭示激子电势和电子孔交换相互作用的扭曲角度调节的机制,这些机制阐明了实验观察到的IXS的扭曲角度依赖性山谷极化。此外,我们根据极化开关实现了可谷化的设备。我们的工作通过在电控制异质结构中调谐扭转角来证明了IXS山谷极化的操纵,这为在互惠设备中开放了电气控制山谷自由度的途径。
了解电子 - 波相互作用在根本上很重要,并且对设备应用具有至关重要的影响。但是,在魔法角度附近的扭曲的双层石墨烯中,目前缺乏这种理解。在这里,我们使用时间和频率分辨的光电压测量方法研究电子音波耦合,作为声子介导的热电子冷却的直接和互补探针。我们发现在魔术角靠近扭曲的双层石墨烯的冷却时,我们发现了一个显着的加速:冷却时间是从室温下降到5 kelvin的几次picseconds,而在原始的双层石墨烯中,在较低温度下,冷却到声子变为较慢。我们的实验和理论分析表明,这种超快冷却是超晶格形成的组合作用,具有低功能的Moiré声子,空间压缩的电子Wannier轨道以及降低的超晶格Brillouin区域。这可以实现有效的电子 - phonon umklapp散射,从而克服了电子 - phonon动量不匹配。这些结果将扭转角建立为控制能量放松和电子热流的有效方法。
kekul´e-o在石墨烯中的秩序,最近已通过实验实现了,它诱导了m〜100 meV的端子。我们表明,扭曲的双层石墨烯,其中一个或两层的kekul´e-o订单在蜂窝和kagome晶格上表现出非平凡的平坦电子带。只有一层具有kekul´e-o顺序时,就有一个参数制度,在该参数方案中,电荷中立性最低的四个频段形成了一个孤立的两孔蜂窝状晶格模型,带有两个平坦的波段。在魔术扭转角θ≈0上,带宽最小。7◦和Dirac Massm≈100MeV。两层均具有Kekul´e-O顺序时,在θ≈1°和M≳100MEV附近都有一个较大的参数状态,其中最低的三个价值和传导频带每个人都实现了带有一个平面频段的孤立的kagome lattice模型,而接下来的三个价值和传导频段是Triangular lattices lattices latt lattices。这些平坦的频带系统可能为物质强度相关的阶段提供了一个新的平台。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。