V Veitch、SAH Mousavian、D. Gottesman 和 J Emerson。稳定器量子计算的资源理论。《新物理学杂志》,16(1):013009,2014 年
Charlotte Gehin, 1 Museer A. Lone, 2 Winston Lee, 3,4 Laura Capolupo, 1 Sylvia Ho, 1 Adekemi M. Adeyemi, 5 Erica H. Gerkes, 6 Alexander PA Stegmann, 7 Estrella López-Martín, 8 Eva Bermejo-Sánchez, 8 Martínez, Martínez, Dzierz , 9,10 Cornelia Kraus, 9 Bernt Popp, 11,12 Vincent Strehlow, 11 Daniel Gräfe, 13 Ina Knerr, 14,15 Eppie R. Jones, 16 Stefano Zamuner, 17 Luciano A. Abriata, 18 Vidya Kunnathully, 1 19 Anthony Eller, Samuel Anthony, 1. 21 Jean-Philippe Bocquete, 21 Evelyne Ruchti, 22 Greta Limoni, 22 Marine Van Campenhoudt, 22 Samuel Bourgeat, 22 Petra Henklein, 23 Christian Gilissen, 24,25 Bregje W. van Bon, 24 Rolph Pfundt, 25 Landa, 24 Jole, H. H. Schemjole. 26 Emanuela Leonardi, 27,28 Fiorenza Soli, 29 Alessandra Murgia, 28 Hui Guo, 30 Qiumeng Zhang, 30 Kun Xia, 30 Christina R. Fagerberg, 31 Christoph P. Beier, 31 Martin J. Larsen, 31 Irene Xienzu, 32 Fernando Valyinda , 33 Robert Śmigiel, 34 Vanesa López-González, 35 Lluís Armengol, 36 Manuela Morleo, 37,38 Angelo Selicorni, 39 Annalaura Torella, 37,38 Moira Blyth, 40 Nicola S. Cooper, 41 Vare Wilson, 44, 434 ore Garde, 45,46 Ange-Line Bruel, 46,47 Frederic Tran Mau-Them, 46,47 Alexis BR Maddocks, 48 Jennifer M. Bain, 49 Musadiq A. Bhat, 50 Gregory Costain, 51 Peter Kannu, 52 Ashish Marwaha, 51 Michael E. E. Friegne, 35 B. Richardson, 53 Vykuntaraju K. Gowda, 54 Varunvenkat M. Srinivasan, 54 Yask Gupta, 55 Tze Y. Lim, 55 Simone Sanna-Cherchi, 55 Bruno Lemaitre, 21 Toshiyuki Yamaji, 56 Kentaro Hanada, 56 John E. Burke, 2017, Ana Briš , D. McCa . abe, 22 Paolo De Los Rios, 1,17 Thorsten Hornemann, 2 Giovanni D'Angelo, 1,19,21 and Vincenzo A. Gennarino 3,58,59,60,61
为了开发量子技术,可靠地处理量子信息需要精确控制非平衡多体系统。这是一项极具挑战性的任务,因为量子态对外部扰动的脆弱性会随着系统规模的增大而增加。在这里,我们报告了一系列实验性量子模拟,这些模拟量化了受控汉密尔顿演化对驱使系统偏离目标演化的扰动的敏感性。基于非时间有序关联,我们证明过程保真度的衰减率随着关联量子比特的有效数量 K 的增加而增加,即 K α 。作为扰动强度的函数,我们观察到两个不同动力学状态之间指数 α 的退相干缩放转变。在低于临界扰动强度的极限情况下,指数 α 急剧下降到 1 以下,并且可控制的量子比特数没有固有限制。量子信息受控动力学的这种弹性量子特性有望实现对大型量子系统的可靠控制。
目的:Cav-1在维持血管内皮稳态中起着至关重要的作用。内皮功能障碍与许多缺血性疾病有关。然而,Cav-1在心肌梗死(MI)中的作用尚未完全阐明。本研究旨在阐明Cav-1在MI损伤中的作用及其对内皮稳态的影响。方法:为了阐明Cav-1在体内MI中的作用,我们构建了整体敲除Cav-1(Cav-1-KO)小鼠。我们在体外通过siRNA操纵Cav-1的表达以评估内皮细胞(EC)缺氧模型下细胞凋亡、炎症反应和氧化应激以及自噬通量的影响。结果:最初,我们发现Cav-1主要在心肌血管内皮细胞中表达。有趣的是,我们发现 Cav-1 缺乏会显著增加心肌梗死面积的大小,同时会导致体内心脏功能恶化。在体外,siRNA 介导的 Cav-1 敲低加剧了内皮细胞凋亡、炎症反应和氧化应激,并消除了自噬通量。然而,用 β -环糊精 (β -CD) 预处理,会消耗膜结合胆固醇并破坏脂筏,从而显著减轻 Cav-1 下调引起的效应。结论:总之,在这项研究中,我们证明 Cav-1 通过维持内皮稳态充当 MI 损伤的保护性调节器。这些发现意味着 Cav-1 可能是 MI 损伤的潜在治疗靶点。
量子技术的出现引起了人们对其提供的计算资源的理论表征的极大关注。量化量子资源的一种方法是使用一类称为魔单调和稳定器熵的函数,然而,对于大型系统而言,这些函数非常难以评估且不切实际。在最近的研究中,建立了信息扰乱、魔单调 mana 和 2-Renyi 稳定器熵之间的基本联系。这种联系简化了魔单调计算,但这类方法仍然会随着量子比特的数量而呈指数级增长。在这项工作中,我们建立了一种对非时间顺序相关器进行采样的方法,该相关器近似于魔单调和 2-Renyi 稳定器熵。我们用数字方式展示了这些采样相关器与量子比特和量子三元系统的不同非稳定器度量之间的关系,并提供了与 2-Renyi 稳定器熵的分析关系。此外,我们提出并模拟了一个协议来测量魔法对于局部汉密尔顿量的时间演化的单调行为。
身体自我意识依赖于视觉,触觉,本体感受和运动信号的不断整合。在“橡胶手幻觉”(RHI)中,具有视觉刺激的刺激会导致自我意识的变化。尚不清楚其他躯体信号是否可以弥补由有关身体的视觉信息引起的自我意识的改变。在这里,我们将RHI与机器人介导的自动触摸结合使用,以系统地研究触觉,本体感受和运动信号在维持和恢复身体自我意识中的作用。参与者用右手移动了领导者机器人的手柄,同时从追随者机器人的左手手中收到了相应的触觉反馈。这种自动刺激是在诱导经典RHI之前或之后进行的。在三个实验中,在RHI之前(但不是之前)提供了主动自我打击,大大降低了由RHI引起的原始漂移,支持主动自我接触对身体自我意识的恢复作用。在非自愿自我打击期间不存在效果。单峰控制条件证实,自动触摸的触觉和运动组件都是恢复身体自我意识所必需的。我们假设主动自动触摸会瞬时提高触摸身体部位的本体感受的精度,从而抵消了RHI构成的视觉捕获效果。
摘要 — 量子信息科学的最新进展揭示了量子多体系统的复杂动力学,量子信息扰乱就是一个很好的例子。受量子信息热力学的启发,这一观点旨在综合几项关键研究的关键发现并探索量子扰乱的各个方面。我们考虑了诸如非时间有序相关器 (OTOC)、量子互信息和三部分互信息 (TMI) 之类的量词,它们与热力学的联系,以及它们在理解混沌与可积量子系统中的作用。我们重点关注代表性示例,涵盖了一系列主题,包括量子信息扰乱的热力学以及量子引力模型(如 Sachdev-Ye-Kitaev (SYK) 模型)中的扰乱动力学。研究这些不同的方法使我们能够强调量子信息扰乱的多面性及其在理解量子力学和热力学交叉领域的量子多体动力学基本方面的重要性。
。CC-BY 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 11 月 21 日发布。;https://doi.org/10.1101/2023.11.19.567745 doi:bioRxiv 预印本
1 英国剑桥大学医学研究委员会生物统计学部,英国剑桥 2 德国伍珀塔尔拜耳制药公司、开放式创新和数字技术部,英国伦敦 3 英国伦敦大学学院英国心脏基金会研究加速器学院,英国伦敦 4 英国伦敦大学学院医院、NIHR 生物医学研究中心,英国伦敦 5 英国剑桥大学公共卫生与初级保健系心血管流行病学部,英国剑桥 6 英国布里斯托尔大学 NIHR 布里斯托尔生物医学研究中心,英国布里斯托尔 7 英国牛津大学医学研究委员会人口健康研究部,英国牛津 8 德国慕尼黑系统神经病学集群 (SyNergy) 9 德国神经退行性疾病中心 (DZNE),德国慕尼黑 10 英国史蒂文尼奇葛兰素史克人类遗传学部,英国美国华盛顿州西雅图 13 挪威科技大学 NTNU 公共卫生与护理系 KG Jebsen 遗传流行病学中心,挪威特隆赫姆 14 英国伦敦帝国理工学院公共卫生学院流行病学与生物统计学系 15 英国伦敦帝国理工学院医学系药理学与治疗学中心 16 英国牛津诺和诺德研究中心 17 英国伦敦大学圣乔治医院医学与生物医学教育研究所及感染与免疫研究所临床药理学与治疗学科 18 英国伦敦圣乔治大学医院 NHS 基金会药学与药品理事会临床药理学组 19 德国慕尼黑路德维希马克西米利安大学 (LMU) 医院中风与痴呆症研究所 (ISD) 20 综合医学研究委员会英国布里斯托尔布里斯托大学流行病学系 21 英国布里斯托尔布里斯托大学布里斯托医学院人口健康科学系 22 美国宾夕法尼亚州费城宾夕法尼亚大学佩雷尔曼医学院外科系 23 英国伦敦大学学院人口健康学院心血管科学研究所 24 荷兰乌得勒支大学医学中心心肺科心脏病学系