少年神经元蛋白脂肪促脂肪促脂肪促脂蛋白(或棕褐色疾病)是一种常染色体隐性,罕见的神经退行性疾病,主要是5岁以上的儿童,并且通常是由高度保守的CLN3基因突变引起的。在这里,我们在斑马鱼中生成了CLN3形态和稳定的突变型线。尽管形态和突变的CLN3幼虫都没有显示出明显的发育或形态缺陷,但突变幼虫的行为表型揭示了对突然的光变化和对脱云药的超敏性的低敏性。Importantly, in-depth metabolomics and lipidomics analyses revealed signi fi cant accumulation of several glycer- ophosphodiesters (GPDs) and cholesteryl esters, and a global decrease in bis(monoacylglycero)phosphate species, two of which (GPDs and bis(monoacylglycero)phosphates) were previously proposed as potential biomarkers for基于其他生物的独立研究的CLN3疾病。我们还可以在人类诱导的多能干细胞中降低gPD的积累 - 带有CLN3致病变异的衍生的大脑器官。我们的模型表明,在没有功能性CLN3的情况下,GPD在生命的早期阶段积累,并突出显示甘油磷酸肌醇和BMP作为症状前CLN3疾病的有希望的生物标志物候选。
估计每年有2.58亿吨塑料进入土壤。连接持续类型的微型塑料(MP),对可生物降解的塑料的需求将增加。仍然有许多关于塑料污染的未知数,并且一个很大的差距是从国会议员释放的溶解有机物(DOM)的命运和组成以及它们与农业系统中土壤微生物的相互作用方式。在这项研究中,将聚乙烯MPS,在不同程度上进行照片,并在不同水平的不同水平的农业土壤中添加了牙乳酸MP,并孵育100天以解决该知识差距。我们发现,添加MP后,降解低芳香性的不稳定成分,导致芳香和氧化程度增加,分子多样性降低,并改变了土壤DOM的氮和硫含量。terephathate,乙酸,草酸盐和L-乳酸在多乙烯MPS释放的DOM释放的DOM中,是由聚乙烯MPS释放的DOM和硝酸盐的,是土壤微生物组的主要分子。MPS释放的DOM代谢的细菌主要集中在蛋白质细菌,静脉杆菌和杆菌中,而真菌主要集中在Ascomycota和Basidiomycota中。我们的研究提供了对MPS释放的DOM的微生物转化及其在农业土壤中DOM进化的影响的深入了解。
摘要肌萎缩性侧硬化症会影响上和下运动神经元,从而导致进行性神经病理学,从而在症状发展前很久就会导致受影响神经网络的结构和功能改变。某些遗传突变,例如C9ORF72中的扩张,使运动神经元群体诱发病理功能障碍。但是,尚不清楚潜在的病理倾向如何影响脆弱网络内的结构和功能动力学。在这里,我们研究了ALS患者衍生的运动神经元网络的微观和中尺度动力学。我们首次表明,ALS患者衍生出具有内源遗传易感性的运动神经元,以细胞质TDP-43夹杂物的形式发展出经典的ALS细胞病理学,并自组织为计算效率高效的网络,尽管具有与健康的对照组相比具有更高的代谢成本的功能标志。这些标志包括微观障碍和中尺度补偿,包括功能集中度增加。此外,我们表明这些网络通过表现出诱导的多动症而极易受到短暂扰动的影响。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月2日发布。 https://doi.org/10.1101/2024.01.02.573934 doi:biorxiv Preprint
Carol、Inˆes、inˆes、Lu´ıs、Peixinho、S´a、Sofia 和 Tiago 在 T´ecnico 度过了 5 年的友谊。感谢
内源性大麻素(Ecbome)是扩展的内源性大麻素系统(ECS),研究表明,该系统与该系统如何调节酒精诱导的神经蛋白流量之间存在联系。使用有条件的敲除(CKO)小鼠在多巴胺神经元(DAT-CNR2)中选择性缺失2型2型受体(CB2RS)和小胶质细胞(CX3CR1-CNR2)中,我们研究了CB2RS如何调节行为和神经蛋白毒素诱导的cb2RS。的行为测试,包括运动和车轮跑活动,旋转rod性能测试以及酒精偏好测试,用于评估酒精诱导的行为变化。使用ELISA分析,我们研究了促炎细胞因子,肿瘤坏死因子-α(TNF-α),白介素-6(IL-6),白介素-1α(IL-1α)(IL-1α)和脑粒属1β(IL-1β(IL-1β)的水平。发现表明运动活性,车轮运行和旋转性性能活动受到多巴胺神经元和小胶质细胞中CB2RS的细胞类型缺失的显着影响。非选择性CB2R激动剂Win 55,212-2,野生型和细胞类型的CB2R CKO小鼠的酒精偏好降低。此外,结果表明,CB2RS本身的细胞类型的特异性缺失,并将酒精施用至CB2R CKO小鼠增加了海马中促炎性细胞因子的表达。这些发现表明CB2RS参与了调节酒精引起的行为和免疫改变。
摘要:使用CAM6扰动参数集合(PPE)评估云反馈对大气模型参数的敏感性。CAM6 PPE PERTURBS在262个模拟中45个参数,其中206个参数在此使用。总云反馈中的扩展及其在CAM6 PPE中的六个组件与跨CMIP6和AMIP集合的扩散相当,表明参数不确定性反映了结构不确定性。但是,CAM6 PPE中的高云高度反馈通常比WCRP评估,CMIP6和AMIP值大。我们评估了45个参数中的每个参数的影响在总云反馈和六个云反馈组成部分中的每个参数。我们还探讨了是否可以使用CAM6 PPE来限制总云反馈,但结果不确定。此外,我们发现,尽管CAM6中云反馈的参数敏感性很大,但云反馈从CAM5到CAM6的大幅增加并不是参数值变化的结果。值得注意的是,与AMIP(CAM6.0)相比,CAM6 PPE的运行方式更近是CAM6(CAM6.3),并且与CAM6.0(0.81 W M 2 2 2 K 2 1 1)相比,总云总反馈(0.56 W m 2 2 K 2 1),主要是由于低云中的低云而降低了Tropics and MidlatiD的低云。工作强调了云反馈对CAM6中参数值和结构细节的敏感性。
量子计算具有广泛的兴趣,因为它为从素数分解[1]到非结构化搜索[2]提供了指数或多项式加速。量子计算机的自然使用是对其他量子系统的模拟,在计算化学中具有众所周知的应用[3,4]和冷凝物质物理学[5,6]。近年来已经看到了量子计算机在基于晶格的Quanty场理论(QFT)模拟中提出的应用(参见参考文献。[7,8]及其参考文献,包括量子染色体动力学的模拟(QCD),该理论描述了夸克和胶子的基本相互作用。晶格QCD非常适合研究QCD的低能量(子GEV)行为,但是晶格尺寸的计算成本的迅速增加使得QCD QCD极具挑战性,可用于模拟碰撞,以在诸如大型Hadron Collider(例如LHC)等较高的高级胶卷中探测的最短长度量表(LHC)。在这些能量下,QCD耦合常数αs变小,因此扰动计算成为选择的方法。使用量子计算机在扰动QCD中模拟硬散射过程已在很大程度上尚未探索。一种模拟量子计算机上通用扰动QCD进程的方法仍然缺失,但由于多种原因是可取的。其次,此功能还意味着量子模拟可以很好地适合对具有高质量最终状态的过程具有完全干扰效应的计算。每个贡献都可以分解为颜色部分和运动部分。This may be in part because the aims of perturbative QFT calculations differ from the aims of most quantum simulations: most quantum simulations (including lattice QCD) aim to take a known Hamiltonian and use it to perform the (unitary) evolution of a quantum system, whereas perturbative QFT calculations aim to calculate the (Hermitian, but not unitary) transition matrix describing the scattering of specified external states and hence研究基本颗粒的产生或衰减。首先,扰动QCD计算需要评估许多不可观察的中间状态的贡献,这使得这种计算使自然候选者从量子计算机操纵量子状态的折叠的能力中受益。第三,通用扰动QCD过程的量子模拟可以通过利用已知量子算法(例如量子振幅估计)提供的加速度来提高扰动QCD预测的速度和精度[9-12]。本文的目的是采取步骤使用量子计算机模拟通用扰动QCD进程。扰动QCD中的计算可以通过求和Feynman图的贡献来执行。颜色部分比运动部分更简单,并且实际上存在有效的程序[13 - 18],用于计算经典计算机上的颜色因子。尽管如此,颜色部分仍然提出了在量子计算机上模拟扰动QCD过程的一些通用挑战。1作为例如,形成量子计算机的量子门必须始终是统一的,而feynman规则(颜色和运动学部分都)描述了Feynman图的组成部分,并非完全单位。这意味着颜色部分提供了一个有用的简化设置,可以使用该设置来开发Feynman图的量子计算的框架,因此它们将成为当前工作的重点。本文的主要结果是两个量子门Q和G,它们分别代表了描述Quark-gluon和Triple-Gluon相互作用顶点的Feynman规则的颜色部分。要实施这些门,我们介绍了一个单位化寄存器U的新概念,该概念可以模拟夸克和胶子的非空间相互作用。
可编程基因组工程技术,例如CRISPR(群集的阶层间隔短的短质体重复序列)核酸酶和大量平行的CRISPR筛选,这些筛选利用了这种可编程性,已经改变了生物科学。这些筛选将基因和非编码基因组元素连接到与疾病相关的表型,但直到最近才限于单个表型,例如生长或基因表达的流通记者。通过将大规模平行筛选与单细胞类型/状态的高维度配对,我们现在可以测量单个遗传扰动或扰动的组合如何影响细胞转录组,蛋白质组和表观基因组。我们审查了CRISPR屏幕与单细胞多组合和使用深层多模式表型扩展的汇总屏幕提供的独特机会。