持续的低海冰范围是导致海洋地表水域变暖的贡献者。2022年的北极海冰范围与2021年相似,远低于长期平均水平。超越海冰范围向海冰时代(与海冰厚度有关(较老的海冰)相关的海冰时代,揭示了更多的清醒观察。北极已经从以多年冰为主导的地区过渡到以一年级(季节性)海冰为主的地区。,虽然海冰大于四岁,但2006年9月覆盖了100万公里,但在2022年9月仅覆盖127,000公里2。可能与高纬度海洋温度升高和海冰降低有关的一种影响是近期在阿拉斯加沿海沿海观察到的海鸟死亡的近期实例(请参见Sidebar 5.2)。这个和其他生态系统的影响,包括鱼类,海洋哺乳动物和陆基食品来源的气候变化,是北极土著人民和居民的严重关注,因为粮食安全和生态系统健康(例如,Search等人 2022; Crozier等。 2021; Mallory and Boyce 2018)。2022; Crozier等。2021; Mallory and Boyce 2018)。
摘要 — 使用精确时间事件监控变电站及其互连拓扑对于现代复杂电力系统网络至关重要。电力系统故障从简单到复杂,需要提供适当的时间同步数字事件和模拟数据,例如电压、电流和频率。电力系统分析师、资产管理团队和工程师必须全面了解电力动态、高分辨率瞬态故障记录和比瞬态故障持续时间更长的低分辨率动态扰动记录,以及相应的顺序事件记录,以评估孤立和互连电力系统故障,准确找到故障源,并采取预防措施避免这些故障再次发生。
摘要 — 使用精确时间事件监控变电站及其互连拓扑对于现代复杂电力系统网络至关重要。电力系统故障从简单到复杂,需要提供适当的时间同步数字事件和模拟数据,例如电压、电流和频率。电力系统分析师、资产管理团队和工程师必须全面了解电力动态、高分辨率瞬态故障记录和比瞬态故障持续时间更长的低分辨率动态扰动记录,以及相应的顺序事件记录,以评估孤立和互连电力系统故障,准确找到故障源,并采取预防措施避免这些故障再次发生。
摘要 — 使用精确时间事件监控变电站及其互连拓扑对于现代复杂电力系统网络至关重要。电力系统故障从简单到复杂,需要提供适当的时间同步数字事件和模拟数据,例如电压、电流和频率。电力系统分析师、资产管理团队和工程师必须全面了解电力动态、高分辨率瞬态故障记录和比瞬态故障持续时间更长的低分辨率动态扰动记录,以及相应的顺序事件记录,以评估孤立和互连电力系统故障,准确找到故障源,并采取预防措施避免这些故障再次发生。
摘要 — 使用精确时间事件监控变电站及其互连拓扑对于现代复杂电力系统网络至关重要。电力系统故障从简单到复杂,需要提供适当的时间同步数字事件和模拟数据,例如电压、电流和频率。电力系统分析师、资产管理团队和工程师必须全面了解电力动态、高分辨率瞬态故障记录和比瞬态故障持续时间更长的低分辨率动态扰动记录,以及相应的顺序事件记录,以评估孤立和互连电力系统故障,准确找到故障源,并采取预防措施避免这些故障再次发生。现代变电站保护和控制智能电子设备 (IED) 提供高分辨率故障记录、时间同步相量数据和带时间戳的事件序列。由于 IED 可以通过全球定位系统 (GPS) 时钟源以亚微秒精度进行时间同步,因此现代 IED 是干扰监测所需的所有数据的完美来源。用于监控和数据采集 (SCADA) 的变电站以太网通信网络(IED 连接在其中)提供了一种经济的解决方案,可将干扰监测数据从 IED 传输到本地归档系统或远程集中系统。本文讨论了新的、优化的干扰监测系统组件及其要求、设计和性能。它展示了如何根据变电站的类型、基础设施或项目时间表,将优化的干扰监测系统经济地调整为独立、混合或完全 IED 集成的系统。它讨论了从不同变电站收集数据并使用工业协议将它们路由到集中位置。它讨论了现代
摘要 — 使用精确时间事件监控变电站及其互连拓扑对于现代复杂电力系统网络至关重要。电力系统故障从简单到复杂,需要提供适当的时间同步数字事件和模拟数据,例如电压、电流和频率。电力系统分析师、资产管理团队和工程师必须全面了解电力动态、高分辨率瞬态故障记录和比瞬态故障持续时间更长的低分辨率动态扰动记录,以及相应的顺序事件记录,以评估孤立和互连电力系统故障,准确找到故障源,并采取预防措施避免这些故障再次发生。
捕获人类疾病遗传复杂性并允许对基础细胞,组织和器官相互作用进行机械探索的实验模型对于使我们对疾病生物学的理解至关重要。这样的模型需要对多个基因的组合操作,通常是一次以上的组织。在体内进行复杂的遗传操作的能力是果蝇的关键优势,其中许多用于复杂和正交遗传扰动的工具。然而,在这些已经复杂的遗传背景中建立更多代表性疾病模型和进行机械研究所需的大量转基因是具有挑战性的。在这里,我们提出了一种设计,该设计通过允许靶向组合异位表达和来自单个诱导型转基因的多个基因敲低的靶向组合异位表达来推动果蝇遗传学的极限。由该转基因编码的多余体转录本包括一个合成的短发夹簇,它克隆在转录本的5'末端的内含子中,然后是两个蛋白质编码序列,该蛋白质编码序列由介导核糖体跳过的T2A序列分开。这项技术对于建模癌症等遗传复杂疾病特别有用,癌症通常涉及多发性肿瘤基因的同时激活和多PLE肿瘤抑制剂的丧失。此外,将多种遗传扰动巩固到single转基因中,进一步简化了执行组合遗传操作的能力,并使其很容易适应广泛的转基因系统。这种用于组合遗传扰动的灵活设计也将是一种有价值的工具,用于探索从人类疾病的OMICS研究中鉴定出的多基因基因特征并创建人源化的果蝇模型,以表征人类基因中与疾病相关的变体。它也可以适用于研究正常组织稳态和发展需要同时操纵许多基因的生物学过程。
通过计算方法识别药物-靶标相互作用 (DTI) 是加速药物开发和了解小分子作用机制的可靠策略。然而,目前预测 DTI 的方法主要集中于识别简单的相互作用,需要进一步的实验来了解药物的作用机制。在这里,我们提出了 AI-DTI,这是一种通过结合 mol2vec 和遗传扰动的转录组来预测激活和抑制 DTI 的新方法。我们在具有 MoA 的大规模 DTI 上训练了该模型,发现我们的模型优于之前预测激活和抑制 DTI 的模型。目标特征向量的数据增强使该模型能够预测广泛可用药靶标的 DTI。我们的方法在训练集中未见靶标的独立数据集和明确定义阳性和阴性样本的高通量筛选数据集中取得了显著的性能。此外,我们的方法成功地重新发现了用于治疗 COVID-19 的药物的大约一半的 DTI。这些结果表明,AI-DTI 是一种实用的工具,可以指导药物发现过程并产生合理的假设,从而揭示未知的药物作用机制。
现在可以通过地球上的仪器探测到引力辐射。与受到人类头骨屏障的电磁辐射相比,引力辐射不受此限制。在 [3] 中,我们通过 MATLAB 模拟展示了引力辐射对人类中枢神经系统中轴突束的影响,这些轴突束之间存在触觉耦合。我们在那里报告说,对于低于 h = 0.09 的应变,对耦合轴突响应的差异时间没有明显影响。考虑到地球接收到的引力波的应变幅度约为 h = 1 e − 21 或更低 [5],我们得出结论,引力波对大脑的信息处理没有影响。然而在本文中,我们得出结论,即使是微弱的引力波也会对轴突束的信息传输产生明确的影响。
剧烈运动是令人不安的胃肠道完整性和功能的代名词,随后引发了全身免疫反应和与运动相关的胃肠道症状,这种疾病被确定为“运动诱导的胃胃综合征。”当运动压力和对齐的加重因子(即外在和内在)具有很大的幅度时,这些与运动相关的胃肠道扰动可能会导致临床意义的降低和健康影响。这可能解释了运动胃肠病学中探索性,机理和介入性研究的指数增长,以了解,准确测量和解释,预防或减轻运动诱发的胃肠道综合征的衰弱和健康后果。考虑到胃术研究的最新进展,人们一直强调,该地区发表的文献一直受到实质性实验局限性的影响,这些限制可能会影响将研究结果转化为实用应用程序和/或未来研究设计的准确性。这种观点方法论试图强调这些关注点,并提供了指导,以提高下一代运动胃肠病学研究的有效性,可靠性和鲁棒性。需要进行标准化的实验程序来准确解释研究发现,避免了误解(例如,反应量级的病理相关性)和夸大的结论(例如,干预研究结果的临床和实际相关性),这将支持更准确地转化为安全实践指南。这些方法上的问题包括参与者筛查和描述,劳累和施用热应激负荷,饮食控制,水合状态,食物和流体规定,昼夜节律变化,生物性别差异,对运动诱导的胃肠道综合征的既定标记,胃肠道症状的有效性,胃肠道症状的有效性评估工具和数据报告和数据报告。