• 不,政府才是罪魁祸首。拜登政府在我们已经从疫情中恢复过来后,向经济注入了数万亿美元的不必要资金。这些钱增加了人们的消费能力。需求增加+供应减少=价格上涨。就连奥巴马总统的前国家经济顾问劳伦斯·萨默斯也警告拜登政府,其新冠疫情支出狂潮将导致通货膨胀。他们没有听,但萨默斯是对的。 经济表现良好。看看股市。它创下了历史新高
本文介绍了部分为船舶结构委员会项目 # 1442 - 船体结构设计的塑性极限状态调查而进行的实验研究。该研究计划包括一系列规模越来越大的实验,以研究船舶框架和格架在横向载荷作用下的塑性行为。初始测试以单个框架进行,固定在两端,并在中心或两端附近施加小块载荷,以便研究两种形式的塑性破坏,即弯曲和剪切。在测试了八个单个框架后,实验继续测试两个小格架(3 个框架连接到一个板面板),然后测试两个大格架(9 个框架加上两个纵梁,连接到 3 个板面板,位于 6.8mx 2.46m 的面板中)。描述了实验程序、数据传感器和全部结果。对框架进行了广泛的 ANSYS 有限元分析,并进行了一些比较。研究发现各种屈曲机制(剪切屈曲、腹板压缩屈曲和断裂)与整体塑性坍塌之间存在许多有趣的关系。本文讨论了对设计(尤其是基于目标的设计)的影响。
微小的污染物在运输完整的单元格和模块和包装组装时可能会粘附在电池组件上。此外,在组装过程中执行焊接工作时,可能会在焊接位置发生毛刺。如果执行抗压测试时,模块或单元中存在任何污染或毛刺,则会发生电弧排放。当时,造成排放的污染或毛刺将被烧毁。因此,重复抗压压测试将无法检测到缺陷。但是,发生放电的位置可能会遭受微小的绝缘缺陷。由于此类缺陷降低了电池的绝缘性能,因此会导致电池降解。如果他们随着时间的推移恶化,它们可能会导致电池过热或着火。ST5680提供了ARC检测功能,以确保在承受电压测试期间可靠检测弧排出事件。
本论文是许多与我共事的人提供的想法和努力的产物。首先,我要感谢我的两位导师:约翰·卡尔森副教授和克里斯·琼斯先生,感谢他们无价的指导和监督。还要感谢迈克·麦肯纳博士在该项目后期阶段的大量投入。还要感谢理查德·沃尔什先生的技术协助和尼尔·戴蒙德先生的统计协助。特别感谢安德鲁·麦卡里先生为这个项目投入的大量时间。他的录像技巧在篮球视频分析领域无与伦比。最后,我要向吉朗超级猫队和墨尔本老虎队的受试者致以诚挚的谢意,他们花时间参与了这项调查。特别是,我要感谢韦恩“狗”拉金斯先生的帮助,如果没有他,这个项目会困难得多。还要感谢两支球队的教练史蒂夫·布雷尼先生和林赛·盖兹先生的帮助。
目的:橡胶广泛用于轮胎、机械零件和需要弹性的用户产品。一些基本特性仍未解决,主要是它们在过度机械性能中发挥作用。需要研究弹性橡胶在高动态压力和高拉伸强度下的性能。这些弹性体旨在增加应力断裂并保持高压拉伸强度。设计/方法/方法:本研究对炭黑聚合物基质对不同橡胶拉伸特性的影响进行了数值研究。使用每百份橡胶 (pphr) 三种不同百分比(80%、90% 和 100%)的炭黑填料部分来测量橡胶的材料特性。结果:本研究发现,随着炭黑填料比例增加 30%,拉伸强度和伸长率会增强。实际意义:本研究在四种超弹性模型中对橡胶进行了实验测试:Ogden 模型、Mooney-Rivlin 模型、Neo Hooke 模型、Arruda-Boyce 模型,使用有限元法 (FEM) 获得模拟材料响应的参数,以供比较。这四种模型已广泛应用于橡胶研究。超弹性模型已用于预测拉伸试验曲线——弹性体橡胶模型的准确描述和预测。对于四种模型,Abaqus 的 FEA 包中使用了弹性体材料拉伸数据。在预测选择合适模型的适应性时计算了相对百分比误差——弹性体橡胶模型的准确描述和预测。对于四种模型,Abaqus 的 FEA 包中使用了弹性体材料拉伸数据。在预测选择合适模型的适应性时计算了相对百分比误差。数值 Ogden 模型结果表明,大应变情况下的相对适应性误差为 1% 至 2.04%。原创性/价值:相比之下,其他模型估计参数的拟合误差从 2.3% 到 49.45%。这四个超弹性模型是拉伸试验模拟,目的是
摘要 Casgevy 是全球首个获批的基于 CRISPR 的细胞疗法,每位患者的价格为 220 万美元。尽管人们普遍预期这一高昂的价格,但这种疗法以及其他细胞和基因疗法的极高成本在公平使用和全球健康方面构成了重大的伦理问题。在本观点中,我们认为降低未来 CRISPR 疗法的价格是一项紧迫的伦理要求。虽然我们将 Casgevy 作为案例研究,但我们的大部分分析都可以推广到其他基因和细胞疗法的可负担使用权争议。首先,我们解释为什么这种首创的 CRISPR 疗法可能如此昂贵。然后,我们分析早期 CRISPR 治疗的公平性和全球健康伦理问题。接下来,我们讨论降低 CRISPR 基因疗法价格的潜在解决方案。我们得出的结论是,CRISPR 的批准改变了我们的司法义务,并迫使我们以可承受的价格为尽可能多的严重遗传疾病患者提供未来的基因疗法。
© 编辑(如适用)和作者 2021。本书为开放获取出版物。开放获取 本书根据知识共享署名 4.0 国际许可证 (http://creativecommons.org/licenses/by/4.0/) 的条款进行许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接并指明是否做了更改。本书中的图片或其他第三方资料包含在本书的知识共享许可证中,除非资料的致谢中另有说明。如果资料未包含在本书的知识共享许可证中,且您的预期用途不被法定规定允许或超出允许的用途,则需要直接从版权所有者处获得许可。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等,即使没有特别声明,也并不意味着这些名称不受相关保护法律法规的约束,因此可以自由使用。出版商、作者和编辑可以放心地认为,本书中的建议和信息在出版之日是真实准确的。出版商、作者或编辑均不对本书所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图和机构隶属关系中的司法管辖权主张保持中立。
我们发现,许多经典概念需要扩展,以适应 AM(特别是激光粉末床熔合)中存在的特定微观结构(晶粒尺寸和形状、晶体结构)和缺陷分布(空间排列、尺寸、形状、数量)。例如,缺陷的 3D 表征变得至关重要,因为 AM 中的缺陷形状多种多样,对疲劳寿命的影响方式与传统生产的部件不同。这些新概念对确定 AM 部件疲劳寿命的方式有直接影响;例如,由于仍然缺少缺陷分类和可容忍形状和尺寸的量化,因此必须定义一种新策略,即理论计算(例如 FEM)允许确定最大可容忍缺陷尺寸,并且需要无损检测 (NDT) 技术来检测此类缺陷是否确实存在于组件中。这些示例表明,AM 部件的组件设计、损坏和故障标准以及特性(和/或 NDT)如何完全相互关联。我们得出结论,这些领域的同质化代表了工程师和材料科学家当前面临的挑战。
山梨县的米仓山光伏电站已经演示了使用高温超导磁轴承 (SMB) 的飞轮储能系统 (FESS) 的应用。为了将 FESS 作为一种能够防止取消再生制动的系统应用于铁路,必须增加其储能容量。因此,进行了高达 158 kN 的悬浮力试验和确定悬浮力蠕变特性的试验,以验证 SMB 悬浮力的裕度。此外,为了评估 SMB 悬浮和旋转特性在转速反复变化下的长期可靠性和耐久性,正在开发能够同时测试 SMB 悬浮和旋转状态的新型 SMB 测试设备。