摘要。目的。信息传输速率 (ITR) 或有效比特率是一种流行且广泛使用的信息测量指标,尤其适用于基于 SSVEP 的脑机 (BCI) 接口。通过将速度和准确性结合为单值参数,该指标有助于评估和比较不同 BCI 社区中的各种目标识别算法。为了计算 ITR,通常假设输入分布均匀,并且通道模型过于简单,该模型无记忆、静止且本质上对称,字母大小离散。因此,为了准确描述性能并启发未来 BCI 设计的端到端设计,需要更彻底地检查和定义 ITR。方法。我们将视网膜膝状体视觉通路承载的共生通信介质建模为离散无记忆通道,并使用修改后的容量表达式重新定义 ITR。我们利用有向图的结果来表征由于新定义导致的转换统计不对称与 ITR 增益之间的关系,从而得出数据速率性能的潜在界限。主要结果。在两个著名的 SSVEP 数据集上,我们比较了两种尖端目标识别方法。结果表明,诱导的 DM 通道不对称对实际感知的 ITR 的影响大于输入分布的变化。此外,证明了新定义下的 ITR 增益与通道转换统计的不对称呈反比。进一步表明,单独的输入定制可以带来感知的 ITR 性能改进。最后,提出了一种算法来寻找二分类的容量,并进一步讨论了通过集成技术将这些结果扩展到多类情况。意义。我们期望我们的研究结果将有助于表征高度动态的 BCI 通道容量、性能阈值和改进的 BCI 刺激设计,以实现人脑与计算机系统之间更紧密的共生,同时确保有效利用底层通信资源。
本手册按照四大类故障进行组织:断裂、腐蚀、磨损以及本文的主题——变形。金属被广泛用作工程材料的原因之一是它们不仅强度高,而且通常能够通过变形来响应载荷(应力)。事实上,冶金工程的很大一部分都与强度和延展性的平衡有关。因此,在分析其他类型的故障时经常会观察到变形,而考虑变形可能是分析的一个重要部分。变形过程中会吸收能量,在某些情况下,吸收的能量也可能是一个重要因素。此外,应该注意的是,并非所有的变形都必然构成“故障”。本文首先考虑真正的变形故障,即变形不应该发生并且变形与功能故障有关的情况。然后,介绍故障分析中对变形的更一般考虑。在这里,变形是指部件形状发生变化但没有材料损失的情况。变形是指导致变形的过程。当结构或部件变形,无法再支撑预期承载的负载、无法执行预期功能或干扰其他部件的操作时,就会发生变形失效。变形失效可以是塑性失效或弹性失效,可能会伴有或不伴有断裂。变形主要有两种类型:尺寸变形(指体积变化(增大或收缩))和形状变形(弯曲或翘曲),指几何形状的变化。本文中的大多数示例涉及金属,但这些概念也适用于非金属。金属、聚合物和木材等各种材料都容易变形,尽管不同类别的材料的变形机制可能略有不同。变形失效通常被认为是不言而喻的,例如,碰撞中车身损坏或钉入硬木时发生弯曲。然而,失效分析师经常面临更微妙的情况。例如,汽车发动机气门杆变形(弯曲)的直接原因是气门头与活塞接触,但故障分析人员必须超越这一直接原因,才能推荐适当的纠正措施。气门可能因润滑不良而卡在打开状态;气门弹簧可能因腐蚀而损坏。弹簧可能强度不足并变形,导致气门掉入活塞的路径中,或者发动机可能多次超过每分钟转速限制,导致线圈碰撞和随后的弹簧疲劳断裂。如果不仔细考虑所有证据,故障分析人员可能会忽略变形故障的真正原因。本文讨论了变形故障的几个常见方面,并提供了变形故障的合适示例以供说明。
I. 简介 用于精确和安全着陆的制导、导航和控制 (GN&C) 技术对于未来机器人科学和载人探索太阳系各个目的地的任务至关重要。这些进入、下降和着陆 (EDL) 技术是美国宇航局精确着陆和危险规避 (PL&HA) 领域的一部分,被认为是空间技术发展路线图 [1] 的高优先级能力,旨在促进和实现新的任务概念。SPLICE 项目,即安全精确着陆 - 综合能力演进 [2],致力于持续开发传感器、算法和航空电子设备,以用于未来的月球着陆任务。具体来说,SPLICE 正在完善着陆器下降过程中的地形相对导航 (TRN) 和危险检测与规避 (HDA) 的传感器硬件和软件的技术就绪水平 (TRL)。 SPLICE 的所有工作主要基于 NASA 先前在 PL&HA 领域的项目,例如 ALHAT [ 3 – 6 ]、COBALT [ 7 – 10 ] 和 LVS [ 11 ],其中包括多年的传感器开发工作 [12–15] 和各种亚轨道飞行测试。SPLICE 是一套用于精确着陆的 GN&C 技术。表 1 中列出的各个组件可以单独飞行,也可以作为着陆器承载的集成有效载荷飞行。NASA 兰利研究中心开发的导航多普勒激光雷达 (NDL) 提供厘米级的精确速度和测距。NASA 戈达德太空飞行中心开发的危险探测激光雷达 (HDL) 可生成预定着陆目标周围区域的高分辨率数字高程图 (DEM)。 TRN 系统包括摄像头、机载地图和 TRN 算法,这些算法由查尔斯·斯塔克·德雷珀实验室公司为 SPLICE 项目开发和实施 [16]。NASA 喷气推进实验室开发的危险检测算法基于参考文献 [17] 中概述的 ALHAT 算法,并进行了一些修改,以便与新型高清激光雷达 DEM 配合使用并在新型下降和着陆计算机 (DLC) 上运行。约翰逊航天中心开发的 DLC 是一种新型航空电子设备设计,正在开发中,以利用高性能航天计算 (HPSC) 处理器 [18, 19]。随着用于 TRN 和 HDA 的 GN&C 硬件和软件的不断成熟,该项目还在开发高精度模拟环境,包括带有 DLC 的硬件在环 (HWIL) 测试平台和一些在环传感器模拟器。此外,SPLICE 正在对机器人和载人任务的 EDL 架构进行详细建模 [ 20 , 21 ],以确定未来需求,揭示现有技术差距,并推动传感器技术发展,使即将到来的任务受益,例如 NASA 的 Artemis 和商业着陆器有效载荷服务 (CLPS) 计划。图 1 是主机飞行器上 SPLICE 有效载荷的高级示意图。TRN 和 HDA 的图像处理需要大量计算,因此 DLC 的设计旨在通过处理大部分视觉导航算法来减轻主飞行计算机的负担。在 DLC 上运行的飞行软件利用 NASA 核心飞行