摘要:生物矿化通过强化软组织为生物体提供承重和保护功能。将生物矿化原理以受控和自组织的方式转化为材料科学是非常可取的,但具有挑战性。自然系统的一个重要教训是,结晶可以通过区室化和模板化来控制。在这里,我们开发了一种结晶技术,该技术基于氧化石墨烯介导的区室化和模板化方解石纳米涂层的棱柱形生长,通过控制离子扩散到微区室中,从而产生多阶段、自组织的结晶,并代表了一种提供连续纳米涂层和增强聚合物表面在接触应力下的摩擦学性能的有效策略。本研究提供了一种自下而上的方法,使用非常基本的生物矿化原理来保护聚合物表面,这对于生物医学应用和以可持续的方式制造高性能功能材料很有意义。■ 简介
骨关节炎 (OA)、类风湿性关节炎 (RA) 和腰痛等肌肉骨骼疾病是全球第二大致残原因,给社会带来了沉重的生理和经济负担 [1,2]。这类疾病的特点是组织退化和炎症活动,可导致慢性疼痛和严重的关节损伤 [3]。具体而言,骨关节炎关节因其承重特性,最容易受到关节软骨退化和滑膜炎症的影响,久而久之会导致关节功能和活动能力丧失。炎性细胞因子[如白细胞介素 (IL)-1、IL-6、肿瘤坏死因子 α (TNF α )] 和降解酶[如基质金属蛋白酶 (MMP)13、具有血小板反应蛋白基序 5 的解整合素金属蛋白酶 (ADAMTS5)] 等生物因素的过度表达会加速骨关节炎的进展,尤其是在关节损伤的情况下 [4]。软骨的无血管特性限制了其自我再生能力;因此需要及时的治疗干预来修复组织并抑制病情进一步进展 [5]。
TimberTech 甲板旨在模仿实木的外观,与实木一样,不同板子的颜色和纹理图案会略有不同。这是故意为之,也是制造过程的一部分,使 TimberTech 甲板具有最逼真和最像木头的外观。这种变化纯粹是美观的,不会或不会影响产品的性能。TwinFinish、ReliaBoard 和 DockSider 旨在随着时间的推移自然风化,表面纹理图案将风化为更一致的颜色。大部分风化过程将在甲板使用的第一年内完成。注意 TimberTech 不适用于用作柱子、支撑柱、横梁、托梁或其他主要承重构件。TimberTech 必须由符合规范的下部结构支撑。虽然 TimberTech 产品非常适合甲板重新装板(拆除旧甲板表面板并在符合规范的下部结构上安装 TimberTech),但 TimberTech 板不能安装在现有甲板板上。布线
范围:为戴斯空军基地的第 7 远程监视站建造一个新的后勤和战备燃料中队 (LGRF) 行政和实验室设施,包括行政空间、指挥空间、实验室空间、物理控制能力和靠近加油卡车场。该建筑包括一个单层设施,带有钢筋混凝土钻孔墩基础、承重砌体墙、外部绝缘饰面系统、轻型钢屋顶框架上的直立锁边金属屋顶和内部装饰。该设施还包括实验室设备,包括接地导轨、水槽、橱柜、水过滤、通风外壳和专用供暖、空调和排水系统;基地宽燃料系统控制接口;电气;安全通信;根据 AFI 32-1062 连接备用发电机;大众通知系统;以及灭火和报警系统。该项目建造了一个小型金属建筑,两端都有高架分段门,用作设备储存。这座建筑将被封闭,但不需要照明、管道、冷却或绝缘。 * 信息提交更改。
所需的承载能力。 [1,4] 受这种各向异性结构的启发,定向增强材料被引入承重材料中,以在所需的方向上实现最大可能的机械性能。 [5] 仿生结构通常用于工程领域,以制造各向异性材料,这些材料可定向增强强度、膨胀或热性能,并执行特定功能,如可调形状恢复、极化图案或流体阻力。 [4] 这些各向异性材料引起了人们对组织工程 (TE) 的长期研究兴趣,以模拟生物组织的机械强度。包括心肌、动脉、静脉在内的软生物组织的强度和弹性[6,7] 在断裂拉伸强度为 1-10 MPa,弹性模量为 1-30 MPa 范围内。 [8,9] 迄今为止,人们已经研究和开发了各种材料和方法,目的是复制或至少模仿生物组织的结构、机械和功能特征。这样做的动机是为了增加我们的基本理解,[10,11] 影响 TE 中的细胞生长,[12] 或将材料用作医学模型。[13]
五十多年来,材料科学家和工程师对此研究兴趣浓厚,这些主题仍将持续受到广泛关注。在过去三十年中,ASTM 就这两个主题主办了多次研讨会,并发表了特别技术出版物 (STP) 612、1186、1263 和 1371。第四届材料热机械疲劳行为研讨会举行之际,美国在 ASTM 的主持下以及国际上在 ISO 的主持下,都在努力制定材料热机械疲劳测试的标准。该 STP 代表了从各种学科传播材料热机械疲劳行为各个方面的努力的延续。例如,材料科学家寻求更深入地了解变形和损伤发展的机制、它们如何受到微观结构的影响以及如何根据特定应用定制这种微观结构。分析师希望开发描述材料组成和损伤演变行为的工程关系和数学模型。最终,设计师寻求工程工具和测试方法来可靠且经济地创建承受循环热诱导载荷的承重结构。
(第 14 届 TWI 在线研讨会)基于电弧的增材制造(AM),也称为定向能量沉积(DED)电弧或线弧增材制造(WAAM),引起了核能、石油和天然气、航空航天、建筑和海洋等广泛行业的极大兴趣。其沉积速率较高,有望用于大型承重结构。 TWI 的技术专长结合了数十年的理论和实践知识、经验和能力,涉及一系列 AM 工艺和支持技术,例如冶金学、材料分析和无损评估。 TWI 拥有一套综合的 AM 研究计划,其中包括过程监控、建模和仿真、AM 设计、产品工程和数字系统集成。 该网络研讨会将介绍 TWI 对 DED arc AM 正在进行的一些研究,并讨论它如何为未来的数字化制造流程做出贡献。这将包括材料、工艺、监测和质量保证等部分,还将介绍能源和其他行业的研究实例。 ◆ 讲师:徐雷博士(电弧焊部门首席项目负责人)<提供翻译>
在生物力学测试之前,通常会冷冻新鲜的人体组织样本,以抑制初始分解过程并实现组织采集与生物力学测试的时间独立性。本研究的目的是比较人类髂胫束 (IT) 的新鲜组织样本与从同一 IT 中采集的新鲜冷冻样本以及在冷冻前用不同浓度的二甲基亚砜 (DMSO) 改性的样本的机械性能。所有样品都经过部分塑化,并使用单轴拉伸试验装置进行破坏性拉伸试验。改进了实验室中已经建立的塑化技术,以改善样品的夹紧行为。材料失效是由承重胶原纤维束的逐渐断裂引起的。与我们的预期相反,新鲜和新鲜冷冻样本的拉伸强度之间没有发现显著差异。与新鲜冷冻样品相比,添加 1 wt% DMSO 不会增加拉伸强度;添加 10 wt% DMSO 甚至导致拉伸强度降低。根据我们的研究结果,使用简单的新鲜冷冻样品来确定拉伸强度是可行的;然而,应使用新鲜样品来生成完整的性能曲线。
旅行电动机:采用串联双电动机的步行驱动器技术,整个机器的步行系统分别使用两个电动机来驱动前后驱动轴。两个电动机通过变速箱连接,两个电动机的功率耦合并传输以满足所有工作条件的需求。整个机器配备了FNR的前后移动操作功能,从而使转移快速易于轻松。电动机根据油门开口实时调整速度,以实现整个机器的无限速度变化。驱动轴:使用XCMG的自制加强9吨驱动轴。轴壳被优化,并扩大了壳的横截面。承重能力和弯曲电阻增加了10%。车轮边缘采用的四个球轮车轮结构,该结构承载均匀的负载,可以承受更大的负载,并且更适合重载条件。定位引脚被添加到驱动轴安装中,以共享螺栓上的冲击负载并提高螺栓的可靠性。它采用了三段重型传输轴,可靠性领先。使用26.5-25轮胎,整个机器具有良好的稳定性,良好的越野性能和通过性能,并且适合在崎rough的道路上行驶和工作。
摘要:关键飞机结构是承重构件,是任何飞机的重要组成部分。疲劳载荷、操作条件和环境恶化的影响导致机身的结构完整性需要评估其适航性要求。使用安全寿命的疲劳设计概念,RMAF 采用飞机结构完整性计划 (ASIP) 来监控其关键部件的结构完整性。RMAF 使用飞机关键结构的工程分析概念制作了任务卡。使用了各种计算机辅助工程 (CAE) 方法,对于此分析,使用裂纹扩展预测方法来确定裂纹扩展行为及其在发生任何裂纹时的最终失效点。虽然有六个关键位置,但选择翼根是因为它最有可能疲劳失效。讨论的分析方法是裂纹扩展分析和低周疲劳。对于数值方法,使用 NX Nastran 模拟裂纹扩展。裂纹扩展分析的结果与数值结果进行了验证。结论是,基于疲劳寿命循环,机翼根部结构状况不会受到严重损坏的影响,无论是通孔还是贯穿侧裂纹,其失效时间约为 30 至 100 年。因此,其结构寿命可以延长。研究成果将致力于延长飞机机翼的结构寿命。