世界上有许多解决方案用非运动方式来对抗无人机(UAV)。考虑到与无人机的动力学作战相关的成本,技术发展使得可以取代这种威胁的an灭,以支持非运动战斗。但是,开发有效的非运动战斗的复杂程度不允许轻松引入适当的解决方案来确保高效。打击无人机的系统的一个重要要素是检测威胁,但是使用适当的措施来应对威胁取决于有效性。考虑到最新的技术解决方案,无人机系统具有防御能力控制系统,使它们能够返回起点以及其他阻碍其根除的元素。世界上很少有解决动力学和非运动控制的解决方案。考虑到这种系统的技术成熟程度,世界上没有太多这样的系统。最常见的是启用电磁脉冲相互作用或适当干扰信号的传输的手动系统。在民用市场中,无人机系统通常使用接近Wi-Fi的频率。连接关系可以通过市售的Wi-Fi干扰设备轻松扭曲。一个更困难的问题是军事无人机系统。操作员和飞机之间的通信可能性扩展到更多可用的无线电频率,因此可以提高其免疫力。因此,本文介绍了非动力学作战无人机系统的当前方法的分析。接下来,审查了非动光无人机战斗的解决方案,以介绍对该主题领域当前使用解决方案的可能性的多方面战术和技术分析的结论。基于这些系统优势和缺点领域的知识,可以提交一项提议,以增加对破坏性非动力战斗无人机的抵抗力。
可再生能源 (RE) 发电厂可以减少因 CO2 排放而破坏环境的化石燃料发电厂的使用。太阳能发电厂 (PLTS) 和风力发电厂 (PLTB) 具有与其性能相关的间歇性特性,受太阳辐射和风速波动等环境条件的影响很大。这会给电力系统的稳定性和可靠性带来问题,从而导致电力系统的利用率不理想。抽水蓄能水电 (PSH) 是一种基于可再生能源的技术,能够在低负荷条件下将多余的能源储存在电力系统中,并在系统处于高峰负荷条件下进行分配。这项研究的目的是确定 PSH 在电力系统中与增加 ET 发电机渗透率之间的关系。本研究采用了 Pastel 和 SWOT(优势劣势机会威胁)分析方法。从讨论结果来看,发现 PSH 技术可以支持印度尼西亚 ET 发电机的普及,尤其是 PLTB 和 PLTS,因为它能够消除电力系统中这些发电机的间歇性。此外,PSH也是一种成熟、规模经济的储能介质,适合在大型复杂电力系统中应用。 PSH的优势在于技术成熟,尤其容量大、经济性好。 PSH 的弱点在于其利用依赖于地点,因为该地区需要有充足的水潜力、丘陵自然条件(海拔)以及相对较大的土地。 PSH提供的机遇是,印尼有许多地区有潜力开发成PSH。此外,使用PSH可以降低生产成本并提高PLTS和PLTB的普及率。 PSH 的威胁是降低存储成本和提高电池性能的趋势。
新兴和颠覆性技术继续受到技术专家、军事战略家、运营商、规划人员、预算人员和政策制定者的极大关注。美国国防部开始强调“威胁知情、概念驱动、能力发展”。这一构想涵盖了三个主要的努力方向,但并未完全考虑新兴技术的作用和影响。本文介绍并讨论了一些评估新兴和颠覆性技术军事影响的关键框架,包括技术成熟、军事效用、催化剂的使用、军事创新和适应过程、抵消战略和作战概念等阶段。讨论了多组分和多层次分析框架 - 杀伤链和任务工程。除了技术之外,相应的努力还必须考虑过渡和采用的过程、分析层级之间的联系、需求与概念、技术、采购和规划、编程、预算和执行 (PPBE) 之间的增强交互以及相关的组织设计。随着用户对新兴和颠覆性技术的认识和理解不断加深,他们必须为现有和其他替代作战概念的实验、实施和发展做出相应的努力。尽管术语和构成各不相同,但几乎所有当代作战概念都具有相同的基本目标 - 试图在 21 世纪以机器速度有效地进行联合作战。技术情报的进步也必须继续发展。尽管人们对“黑天鹅”事件或“技术惊喜”存在普遍的担忧和声明,但对于新兴和颠覆性技术而言,惊喜只会发生在那些不注意的人身上。军事运筹学与分析 (ORA) 社区可以充当利益相关者之间的重要桥梁,并评估这些不同技术的军事效用以及如何最好地利用它们来获得战略、作战和战术优势。
X-Energy,LLC。感谢您主席Luetkemeyer和排名成员Beatty举行了重要的听证会。也感谢您代表X能量分享我的经验。简介我的名字叫本杰明·雷恩克(Benjamin Reinke),我是X-Energy的全球业务发展副总裁。完成博士学位后在俄亥俄州立大学的核工程学业上,我加入了参议院能源与自然资源委员会的多数专业人士,后来曾担任美国能源部长的高级政策顾问,同时担任能源部战略规划和政策办公室执行董事。在政府期间,我有机会制定和制定许多清洁能源政策,包括大量的核政策,并且已经看到了许多现有的政府计划,以支持美国核能技术开发以及在家和国外部署。我加入了X-Energy,在大约一年前,我在那里运行了大约两年的公司战略职能。我还担任大西洋委员会全球能源中心的非居民高级研究员的无偿职位。X-Energy是一家核反应堆和燃料设计工程公司,总部位于马里兰州罗克维尔,拥有400多名员工和数百名承包商,这是我们设计团队的一部分。X-Energy由15年前由我们的执行董事长Kam Ghaffarian博士创立,将能源技术带入了清洁,负担得起,安全和安全的市场。今天,X-Energy有三个主要产品:迄今为止,联邦政府和私营部门已经在我们的知识产权和基础设施的开发上投资了超过6亿美元,都致力于以随着全球需求的规模来将我们的反应堆和燃料带入市场。kam的旅程将他带入了IV一代反应堆,通常称为高级反应堆,他选择了高温气冷的卵石床反应器(HTGR),因为其技术成熟,证明了安全案例,并且能够提供负担得起的电力和高温工艺热量。,美国政府以前在开发HTGR技术方面进行的投资,更重要的是,它们为它们构成了X能源的平台所供力的燃料。
在1 J09厅访问我们。在第二次参加Vivatech的比赛中,将于2021年6月16日至19日在巴黎举行的欧洲全球技术聚会,CNR将提供其在DeepTech的专有技术的广泛样本!从生物技术到Greentech,量子技术,氢以及体育,科学家以及CNRS和合作伙伴实验室的起点将展示未来的技术。 “CNRS在Vivatech的存在见证了组织对从其实验室中出现的初创企业的承诺,并说明了我们的自愿政策,促进了科学研究的企业家精神和技术成熟,“ Points Out CNRS主席兼首席执行官Antoine Petit。“所展示的各种项目范围反映了我们与合作伙伴进行的研究,以应对我们社会面临的挑战。从基础研究到DeepTech,CNRS是该国经济复兴的动态参与者。”今年,CNRS决定展示量子技术,氢和MedTech。在量子技术领域,访问者可以了解更多有关:Prometheus,Quandela的单光源来源,它将集成到未来的量子计算机中; C12量子电子产品的碳纳米管,这是未来量子处理器的有希望的材料;和Atlas,来自Qubit Pharmaceuticals的硅分子模拟器。氢技术将由H2Sys代表,H2SYS将展示其氢能发电机之一,而H2Pulse将为寻求过渡到氢气的公司提供测试工作台的证明。MedTech也是CNRS初创企业创建的主要领域:HealShape将呈现从患者自己的细胞中获得的3D生物打印的乳腺植入物,可以适应所有形态。墨西哥将展示其生物传感技术和基于石墨烯的绷带和斑块,特别是用于远程医疗监测伤口的愈合过程。也出现在CNRS架上,将是Lify-Air提出的连接的花粉传感器,该传感器可以预测花粉的峰值,这是为过敏个体提供救济的宝贵工具。访问者还将能够测试SportsDynalics平台,以分析来自运动表现的动态指标,除了由人工智能操作的Vibiscus的新型吸收材料外,它还提供了运动表现的动态指标。它具有节能,紧凑和多功能,甚至可以降低低频噪声。最后,机器人手在CNRS的PPRIME学院开发,每个手指各个手指都有四个关节,可以掌握不同形状的物体,并以复杂的方式操纵它们。它将在Vivatech的数字空间中展出!
关键词:高电子迁移率晶体管 (HEMT)、磷化铟 (InP)、高频、制造摘要自 DARPA 太赫兹电子项目结束以来,诺斯罗普·格鲁曼公司 (NG) 一直致力于将工艺过渡到 100 毫米,并使先进的 InP HEMT 技术适用于高可靠性 A 类空间应用。NG 的 100 nm InP HEMT 节点目前处于制造就绪水平 (MRL) 9,而砷化铟复合通道 (IACC) 节点处于 MRL 3/4。为了提高 IACC 的 MRL,NG 一直致力于将工艺从材料生长转移到晶圆加工到 100 毫米生产线,并利用 100 nm InP HEMT 工艺的制造和认证专业知识。在整个工艺转移和成熟过程中,NG 克服了工艺重现性、产量和吞吐量方面的挑战,并进行了广泛的可靠性测试。引言在过去二十年中,在美国国防高级研究计划局、美国宇航局/喷气推进实验室和三军的资助下,诺斯罗普·格鲁曼公司 (NG) 通过积极缩小 InP HEMT 尺寸并使用超高迁移率砷化铟复合通道 (IACC) HEMT 结构,展示了高达太赫兹的高电子迁移率晶体管 (HEMT) [1,2] 和单片微波集成电路 (MMIC) [3-6],如表 1 所示。InP 和 IACC HEMT 的关键制造步骤是分子束外延 (MBE)、电子束光刻 (EBL) 栅极、基板通孔 (TSV) 以及缩放互连和钝化工艺。材料生长和制造工艺最初是在 NG 的 75 毫米生产线上开发的。NG 致力于技术成熟工作,以缩小制造差距,以提高 IACC 节点的 MRL [7]。工艺概述 InP 和 IACC HEMT 晶圆采用分子束外延法在半绝缘 InP 衬底上生长。IACC 外延剖面具有复合通道,该通道由夹在两个晶格匹配的 In x Ga 1-x As 层之间的 InAs 层组成 [2]。高电子迁移率 InAs 通道是高频低直流功率操作的关键推动因素。肖特基势垒层和重掺杂帽经过优化,可实现低
摘要。地中海盆地被气候变化视为世界上受影响最大的地区之一。传统上,该地区的葡萄栽培一直在应对高温,热浪和干旱。由于未来预测的气候变化,预计会加剧植物上严重的非生物压力的如此特别的极端条件。圣托里尼岛似乎并不是例外。与水的可用性低相结合,温度和太阳辐射的升高使得有必要开发和应用方法,以应对葡萄藤的非生物应力。这项研究检查了叶面的应用及其对葡萄的质量和定量特征的影响,通过喷洒Santorini葡萄园(Greece),Assyrtiko和Mavrotragano的两个土著品种的应用。实验发生在2019 - 2020年耕种季节。具体而言,评估了高岭土和碳酸钙的处理,评估了两种能够反映辐射的惰性材料。在Assyrtiko的情况下,考林和碳酸钙的影响在两个不同的训练系统,即Santorini“ Kouloura”的传统培训系统以及单个Guyot培训系统上进行了检查。在Mavrotragano的情况下,考林和碳酸钙的作用在葡萄藤上检查了在双重Guyot训练系统中接受训练的葡萄藤。对葡萄和浆果进行了机械分析,并在技术成熟阶段对必须的特征进行了测量。在皮肤和种子中确定酚类化合物的含量,并使用分光光度计使用不同方法,使用不同的方法(FRAP和DPPH)测量样品的抗氧化能力。同时,对高压液相色谱法(HPLC)的分析表明,必须在必不可少的单个糖和酸中浓度以及皮肤单个花色苷的测量值为CV Mavrotragano。治疗结果表明,与葡萄和浆果的重量,长度和宽度相关的分析以及pH的测量以及两个训练系统的总滴定酸度以及两个品种似乎都没有影响。同样,与对照处理中的葡萄相比,喷雾样品的大多数酚类化合物和花青素的水平主要增加,因此,这会导致质量更好的葡萄,因此葡萄酒质量更好,因为当前实验中的大多数测量值也与葡萄酒的有机物质直接相关。因此,通过叶面应用使用高岭土和碳酸钙构成了适应葡萄藤的重要手段,葡萄藤在干旱条件下,在经济和环境可持续性的原因方面生长,同时提高葡萄的质量。
(研究与技术),国防部研究与工程副部长 Holthe 先生目前担任国防部研究与工程副部长办公室平台与武器技术主任。在这一职位上,Holthe 先生担任高级专家、顾问和经理,也是国防部在平台和武器技术领域的高级顾问。Holthe 先生负责国防研究与工程主任办公室(研究与技术)下属空、陆、海、天领域平台和武器领域航空航天技术和推进、定向能、材料、弹药、电力和能源以及无人系统的科技工作和发展的战略、协调和监督。Holthe 先生于 2020 年 4 月被任命为高级行政服务人员。此前,Holthe 先生曾担任陆军副助理部长办公室(研究与技术)的杀伤力组合主任。担任此职务期间,霍尔特先生负责杀伤力科学和技术工作,包括能量学、推进和弹头,以增加射程和决定性作用;制导和导引头,以提高在 GPS 拒绝或退化环境中的精度;动能武器和定向能武器,用于经济实惠的防空;导弹和火炮,用于扩大射程精确射击;以及士兵武器技术,使陆军部队能够与任何敌人抗衡。2016 年,霍尔特先生被任命为代理一级 SES 技术主任和陆军副助理部长(研究和技术)的副手。 Holthe 先生曾担任陆军研究、开发、测试和评估 (RDT&E) 计划的 6.1(基础研究)、6.2(应用研究)、6.3(先进技术开发)、6.4(技术成熟计划)和 6.7(制造技术)预算活动的首席科学和技术 (S&T) 战略规划师和顶级联络人、协调员、经理和发言人。他负责这些计划的计划开发、评估和监督,并担任陆军首席科技顾问、咨询师和发言人,制定并向陆军部、国防部长办公室和国会辩护选定的科学和技术预算、计划、方案、优先事项和投资。 Holthe 先生于 1995 年获得明尼苏达州诺斯菲尔德圣奥拉夫学院体育科学学士学位,主修运动医学。他于 1999 年获得爱荷华州立大学运动科学(生物力学)硕士学位。Holthe 先生于 2003 年完成了海军研究生院的高级采购计划,并于 2014 年毕业于竞争发展小组/陆军采购奖学金计划,在该计划期间,他担任 PEO Soldier 的助理产品经理和系统集成商,曾担任陆军副助理部长办公室(研究和技术)纳蒂克士兵研究开发和工程中心联络官,陆军助理部长办公室(财务管理和主计长)/陆军预算办公室导弹采购和 RDT&E 预算分析师。霍尔特先生于 2006 年成为陆军采购部队成员,并于 2018 年毕业于人事管理办公室联邦行政学院民主社会领导力项目。在其职业生涯中,霍尔特先生曾获得民事服务成就奖章、两项民事服务指挥官奖、陆军高级单位奖和圣莫里斯勋章 - 民事级别。