如图 3 所示,PQ 特性表现出使用同等功率的电机时的特性趋势。风扇的风量较大,其静压为鼓风机的 1/2 至 1/5。鼓风机的静压较大,其风量为风扇的 1/2 至 1/5。在没有通风阻力(0 Pa)的情况下,在风扇周围没有物体的情况下(此自由空气条件为 x 轴),最大风量(QFmax)流动。但是,只要风扇安装在设备中,这种情况就不存在。通风阻力较大且风量不足的状态对应于图 3 中的 y 轴,由于空气不移动,因此风量为零。在这种情况下,风扇前后有障碍物阻碍气流或切断空气的循环路径。当风扇用于冷却或通风目的时,不能考虑这种操作条件。 (如果在此状态下继续运转,则风扇可能会受损。)实际的运转条件在上述两种极端情况之间变化。图3绘制了4种通风阻力(以二次曲线绘制)。包含风扇或鼓风机的设备单元具有不同的通风阻力,其中这4条曲线是典型的例子。流入设备的气流位于通风阻力曲线与风扇或鼓风机的PQ特性的交点处。倾斜度最小的通风阻力1曲线被认为是普通设备的通风阻力。在此通风阻力下,风扇的前后没有较大的障碍物,并且提供了足够的循环路径。风扇在此通风阻力1下可以最高效地运转,此时风扇最大风量的约80%是可能的。 (QF2带风扇时和QB2带鼓风机时风量) 4条曲线中,倾斜度最大的通风阻力曲线4,即使安装了高性能风扇或鼓风机,风量也只是最大风量的一小部分。此时,风量为QB1带鼓风机和QF1带风扇时,鼓风机的风量较大。中间的通风阻力曲线2和3的风量也是与各自的PQ特性相交的风量。 NIDEC SERVO提供专用于高静压区域的风扇,风扇电机针对中等通风阻力进行了优化设计。如图4所示,与普通轴流风扇相比,在高静压区域更易于实现更安静和节能的运行。(参见第G-36页)
缓冲氯化钠蛋白胨溶液的成分符合 USP/EP/BP/JP/IP(1-5) 的统一方法。建议使用此培养基制备稳定的测试菌株悬浮液,用于验证非无菌产品的微生物检测程序。使用标准化的稳定悬浮液可以确定该测试是否适用于在产品存在的情况下检测微生物。使用此溶液稀释/溶解不溶于水的非脂肪产品和水溶性产品。HMC 蛋白胨可作为营养源并保持细胞活力。培养基中的磷酸盐可作为良好的缓冲剂。氯化钠可保持渗透平衡。聚山梨醇酯可降低表面张力,还可使测试样品中存在的酚类化合物失活。据报道,卵磷脂和聚山梨醇酯 80 (Tween 80) 是中和剂,可使样品收集处的残留消毒剂失活 (6)。卵磷脂可中和季铵化合物,聚山梨醇酯80可中和酚类消毒剂、六氯酚、福尔马林和卵磷脂乙醇(7)。
脂质,包括脂肪和油,高度降低。当脂质分解代谢时,与碳水化合物或蛋白质相比,它具有每克每克的电子对,因此能量更多的潜力(1)。这个过程是由酶脂肪酶引起的,并且具有酶脂肪酶的生物称为脂肪溶解生物。产生脂肪酶的微生物的生长会导致牛奶和高脂肪乳制品的风味。脂肪酶作用释放的一些游离脂肪酸具有低风味阈值,并且可以在低浓度下赋予腐烂的味道。精神蓝色琼脂,以检测和枚举脂解微生物。这是一种基础培养基,添加了脂类底物,以检测,枚举和研究脂解微生物。在starr之前实践中的制剂,包括染料作为脂解的指标有时是对微生物的抑制作用。starr表现出蓝色的蓝色,是脂解的理想指标,可视化为殖民地周围清晰的光环。介质中的胰酮和酵母提取物是碳,氮,维生素和矿物质的来源。精神蓝色是一种染料,充当脂解的指标。建议用作脂质源的脂肪酶试剂是棉花粉,奶油,橄榄油等。可以通过在400毫升温暖的蒸馏水中溶解10克相思或1毫升多氧化盐,加入100毫升棉花或橄榄油并剧烈搅拌以乳化而制备令人满意的乳液。
根据USP/EP/EP/BP/JP/IP(1-5)的统一方法,建议将大豆酪蛋白消化培养基作为无菌测试培养基(1-5)。它用于通过管稀释法(6)对抗菌剂的敏感性测试。它也用于微生物学诊断研究。该培养基用作制备样品或测试菌株的稀释剂和悬浮培养基。它也用于样品制备进行测试,其中进行了孵育,仅用于对细胞的足够复苏,同时避免了生物体的繁殖。类酮和大豆肽通过提供硝化化合物和碳质化合物,长链肽,维生素和其他必需营养素来生长微生物的生长,从而使这种中等营养。大豆中的天然糖促进了挑剔的生物的生长。葡萄糖一水合物是碳和二硫代磷酸钾的可发酵来源,用作培养基中的缓冲液。氯化钠维持培养基的渗透平衡。建议使用这种培养基,以检查无菌微生物数量,以验证用于检查无菌性检查的微生物测试程序。