抽象的目的是在风湿病中评估现代Spikevax主要系列后的安全性,免疫原性和细胞反应。方法,我们对稳定治疗的成年人(RA,n = 131)进行了12个月的前瞻性,未随机,开放标签的,比较试验;全身性红斑狼疮(SLE,n = 23)在霉菌酸酯莫菲蒂(MMF)上;泼尼松≥10mg/天(n = 8)或年龄匹配/性匹配的对照(健康对照,HC,hc,n = 58)的其他风湿性疾病。不良事件(AES),体液免疫反应(免疫原性:抗SARS-COV-2峰值蛋白及其受体结合结构域的IgG阳性,中和抗体(NABS)),细胞反应(ELISPOT)和COVID-19的感染率。疫苗接种后自我报告的AES的结果频率相似(HC 90%,RA 86%,SLE 90%);其中,肌肉骨骼AE在RA中更常见(HC 48%vs RA 66%(δ95%CI CI CI 3至32.6))。疾病活动评分没有增加疫苗接种后。没有据报道与疫苗有关的严重AE。在RA和SLE中,疫苗接种后的免疫原性降低(RA 90.2%,SLE 86.4%;对于HC与HC相比,这两种免疫原性都不包括NULL)。同样,患者的NAB降低(RA 82.6%,SLE 81.8%)。在RA中,年龄> 65(OR 0.3,95%CI 0.1至0.8)和利妥昔单抗治疗(OR 0.003,95%CI 0.001至0.02)是免疫原性的负预测指标。ELISPOT在16/52测试的RA和17/26 HC(δCI11.2-53.3)中为阳性。在研究期间,11 HC,19 RA和3名SLE患者自我报告的共同感染。在患有自身免疫性疾病的免疫抑制成年人中的Covid-19疫苗中的结论,Moderna Spikevax主要系列是安全的。MMF,RA> 65岁和利妥昔单抗与疫苗诱导的保护降低有关。
使用无细胞循环肿瘤DNA(CTDNA)的抽象液体活检在研究和临床环境中经常使用。ctDNA可用于鉴定可起作用的突变,以个性化全身疗法,检测治疗后最小残留疾病(MRD)并预测对免疫疗法的反应。ctDNA也可以从一系列不同的生物流体中分离出来,如果比血浆更近端采样,则可能检测到局部MRD并增加敏感性。然而,在早期和处理后的MRD环境中,ctDNA检测仍然具有挑战性,因为ctDNA水平微小,带来了较高的假阴性结果的风险,这与克隆造血的假阳性结果的风险保持平衡。为了应对这些挑战,研究人员已经开发出了越来越高的优雅方法,以降低CTDNA测定的检测极限(LOD),通过降低低水平技术和生物学噪声的来源,以及通过降低CTDNA的特定基因组和表观质量特征来降低低水平技术和生物学噪声的来源,并通过降低低级技术和生物噪声的来源来降低检测极限(LOD)。在这篇综述中,我们重点介绍了一系列用于CTDNA分析的现代测定,包括提高信噪比的进步。我们进一步强调了检测到超稀有肿瘤相关的变体的挑战,这将提高治疗后MRD检测的敏感性,并打开个性化辅助治疗决策的新领域。
ABCG2是一种ATP结合盒转运蛋白,它导出了多种异种生物化合物,并被认为是癌细胞中多药耐药性的因素。底物和与ABCG2的相互作用进行了广泛的研究,并且已经开发出了小分子抑制剂,以防止从肿瘤细胞中输出抗癌药物。在这里,我们探索了靶点位点以外的抑制剂的潜力。我们开发了针对ABCG2的新型纳米化,并使用功能分析选择了三种抑制性纳米型(NB8,NB17和NB96),通过单个粒子冷冻电子显微镜进行结构研究。我们的结果表明,这些纳米结合在变构与核苷酸结合域的不同区域结合。NB8的两个副本与NBD的顶点结合,以防止它们完全关闭。NB17在转运蛋白的两倍轴附近结合,并与两个NBD相互作用。NB96与NBD的侧面结合,并固定与与ATP结合和水解相关的关键基序连接的区域。所有三种纳米体都阻止了转移者经历底物运输所需的构象变化。这些发现提高了我们对外部粘合剂调节ABCG2的分子基础的理解,这可能会促进新一代抑制剂的发展。此外,这是通过纳米剂对人多药耐药转运蛋白进行调节的第一个例子。2023作者。由Elsevier Ltd.这是CC下的开放式访问文章(http://creativecom- mons.org/licenses/4.0/)。
已发现有 50 多个蛋白质家族可抑制 CRISPR(成簇的规律间隔的短回文重复序列)-Cas 介导的适应性免疫系统。在本文中,我们分析了可用的抗 CRISPR(Acr)结构,并描述了 CRISPR-Cas 的化学计量和酶抑制剂的共同主题和独特机制。化学计量抑制剂通常充当蛋白质结合伴侣或核酸靶标的分子诱饵,而酶抑制剂则共价修饰 Cas 核糖核蛋白复合物或降解免疫信号分子。我们回顾了 Acrs 结构揭示的机制见解,讨论了与每种策略相关的一些权衡,并强调了 Acrs 在克服适应性免疫的竞赛中是如何受到调节和部署的。
肺癌仍然是全球癌症死亡的主要原因。超过 50% 的新病例是在晚期或转移期被诊断出来的,因此导致这些患者的生存率很低。近三分之一的肺腺癌发生 KRAS(Kirsten 大鼠肉瘤病毒)基因突变,几十年来一直被认为是“无药可治”的靶点。然而,近年来,越来越多的小分子(如 GTPase 抑制剂)已在携带 KRAS 突变的肺癌患者的临床试验中进行研究,并取得了有希望的结果和更好的疗效。目前,只有两种获批的靶向疗法(adagrasib 和 sotorasib)用于二线治疗晚期或转移性 KRAS 突变 NSCLC。在这篇叙述性综述中,我们将重点介绍 KRAS、其分子基础、其共突变的作用、其抑制的临床证据、推定的耐药突变以及克服对 KRAS 抑制的耐药性的未来策略。
磷蛋白磷酸酶-1 (PP1) 是调节磷酸丝氨酸 (pSer) 和磷酸苏氨酸 (pThr) 去磷酸化的关键因素,参与大量细胞信号通路。PP1 的异常活性与许多疾病有关,包括癌症和心力衰竭。除了调节蛋白控制活性的明确机制外,还已证实 PP1 C 端固有无序尾部中 Thr 残基的磷酸化 (p) 具有抑制功能。人们反复提出,细胞周期停滞的相关表型是由于 PP1 通过构象变化或底物竞争而自我抑制所致。在这里,我们使用由突变和蛋白质半合成产生的 PP1 变体来区分这些假设。我们的数据支持以下假设:pThr 通过介导蛋白质复合物形成而不是通过结构变化或底物竞争的直接机制发挥其抑制功能。
Eric Wang, 1, 10, * Jose Mario Bello Pineda, 2, 3, 4, 10 Won Jun Kim, 5, 10 Sisi Chen, 5 Jessie Bourcier, 5 Maximilian Stahl, 6 Simon J. Hogg, 5 Jan Phillipp Bewersdorf, 5 Cuijuan Han, 1 Michael E. Singer, 5 Daniel Cui, 5 Caroline E. Erickson, 5 Steven M. Tittley, 5 Alexander V. Penson, 5 Katherine Knorr, 5 Robert F. Stanley, 5 Jahan Rahman, 5 Gnana Krishnamoorthy, 7, 8 James A. Fagin, 7, 8 Emily Creger, 9 Elizabeth McMillan, 9 Chi-Ching Mak, 9 Matthew Jarvis, 9 Carine Bossard, 9 Darrin M. Beaupre, 9 Robert K. Bradley, 2 , 3 , * 和 Omar Abdel-Wahab 5 , 11 , * 1 杰克逊基因组医学实验室,美国康涅狄格州法明顿 06032 2 美国华盛顿州西雅图弗雷德哈钦森癌症研究中心公共卫生科学和基础科学部 3 美国华盛顿州西雅图华盛顿大学基因组科学系 4 美国华盛顿州西雅图华盛顿大学医学科学家培训计划 5 美国纽约州纽约市纪念斯隆凯特琳癌症中心斯隆凯特琳研究所分子药理学项目 6 美国马萨诸塞州波士顿丹娜—法伯癌症研究所肿瘤内科系 7 美国纽约州纽约市纪念斯隆凯特琳癌症中心人类肿瘤学和发病机制项目 8 美国纽约州纽约市纪念斯隆凯特琳癌症中心医学系、内分泌学分部 9 Biosplice Therapeutics Inc.,美国加利福尼亚州圣地亚哥 10 这些作者贡献相同 11 主要联系人 *通信地址:eric.wang@jax.org (EW)、rbradley@fredhutch.org (RKB)、abdelwao@mskcc.org (OA-W.) https://doi.org/10.1016/j.ccell.2022.12.002
C反应蛋白(CRP)在肝脏中合成。通过IL-1ß/IL6途径刺激合成。CRP通过C1Q和巨噬细胞通过FCγ受体激活补体系统。由于CRP血浆水平升高与心血管风险增加有关,因此CRP可能在心血管疾病中起因果作用。将这些观察结果转移到标准医疗保健中的一种方法是产生肝CRP合成抑制剂,并将其用于对照临床试验中。尽管有巨大的药理努力,但事实证明,寻找CRP合成抑制剂很难。首先,反义寡核苷酸RNA技术虽然有希望的想法,但尚未导致临床实践可行的结果。其次,在寻找肝CRP抑制剂时,高吞吐量筛选测定受到限制,因为原代人肝细胞不能在体外充分生长。使用基因工程肝癌细胞的使用导致心脏糖苷能够抑制CRP合成。由于专利法的考虑,制药公司对进一步追求这一可能的途径的兴趣有限。抗体对IL-1ß和IL-6的抑制作用在心血管临床试验中显示出阳性结果,但是由于副作用,这些抗体尚未获得FDA的批准。相反,FDA最近批准了长期的秋水仙碱治疗,尽管不是CRP特定的方法。目前,其他途径似乎更有前途。综上所述,直到今天,还没有令人信服的证据表明肝CRP合成可以在人体医学中特异性,有效,安全地抑制。在这里,我们总结了当代方法,以抑制CRP综合和未来临床试验的潜在目标。
Arcalyst®是Regeneron Pharmaceuticals,Inc。的注册商标。5。Luis SA,Cremer PC,Raisinghani A等。rilonacept在类固醇的复发性心包炎中利用:现实世界中的证据表明采用增加了。JACC 2024; 4月,83(13_supplement)408。6。reid A,Klein A,Lin D等。共振注册表:儿科和成人心包炎患者的回顾性和前瞻性纵向,观察注册中的理由和设计。EUR HEART J 2021; 42:问题补充1。7。Clair J,PC Cremer,Sa Luis等。基线人口统计学和疾病特征在儿科和成人患者(共鸣)中纳入自然心包炎自然史的患者。j am coll Cardiol 2023; 81(8_supplement):626。
1 波兰格但斯克大学和格但斯克医科大学跨校生物技术学院分子酶学和肿瘤学系,Debinki 1, 80-211 格但斯克;izabela.zarczynska@gumed.edu.pl (IZ);monika.gorska@gumed.edu.pl (MG-A.);acskla@gumed.edu.pl (ACS) 2 波兰玛丽亚居里国家肿瘤研究所格利维采分所生物统计学和生物信息学系,Wybrzeze Armii Krajowej 15, 44-102 格利维采;alexander.cortez@io.gliwice.pl (AJC) Agata.Wilk@io.gliwice.pl(AMW)3 癌症转化研究和分子生物学中心,玛丽亚居里国家肿瘤研究所,格利维采分所,Wybrzeze Armii Krajowej 15, 44-102 格利维采,波兰;Katarzyna.Kujawa@io.gliwice.pl(KAK);Katarzyna.Lisowska@io.gliwice.pl(KML)4 西里西亚理工大学系统生物学和工程系,44-100 格利维采,波兰 5 临床开发部,Celon Pharma SA,Marymoncka 15, 05-152 Kazu´n Nowy,波兰;aleksandra.stanczak@celonpharma.com(AS); maciej.wieczorek@celonpharma.com (MW) 6 临床前开发部,Celon Pharma SA,Marymoncka 15, 05-152 Kazu´n Nowy,波兰;monika.skupinska@celonpharma.com * 通讯地址:rafal.sadej@gumed.edu.pl (RS);kamila.kitowska@gumed.edu.pl (KK)