网络定理、网络图、节点和网格分析。时域和频域响应。镜像阻抗和无源滤波器。双端口网络参数。传递函数、信号表示。电路分析的状态变量法、交流电路分析、瞬态分析。逻辑系列、触发器、门、布尔代数和最小化技术、多振荡器和时钟电路、计数器环、波纹。同步、异步、上下移位寄存器、多路复用器和多路分解器、算术电路、存储器、A/D 和 D/A 转换器。调制指数、频谱、AM 生成(平衡调制器、集电极调制器)、幅度解调(二极管检测器其他形式的 AM:双边带抑制载波、DSBSC 生成(平衡调制器)、单边带抑制载波、SSBSC 生成和相位调制、调制指数。
我们使用 795 nm 拉曼激光器驱动量子比特状态之间的跃迁,该激光器从 5 S 1 / 2 到 5 P 1 / 2 跃迁红失谐 2 π × 100 GHz。我们将激光器耦合到基于光纤的 Mach-Zehnder 强度调制器 (Jenoptik AM785),该调制器在最小透射附近进行直流偏置。调制器以量子比特频率的一半 (ω 01 = 2 π × 6.83 GHz) 驱动,从而产生 ± 2 π × 3.42 GHz 的边带,而载波和高阶边带受到强烈抑制。与其他通过相位调制产生边带然后使用自由空间光腔或干涉仪单独抑制载波模式的方法相比,这种方法在一天的时间尺度上是被动稳定的,无需任何主动反馈。拉曼激光沿着原子阵列排列(与 8.5 G 偏置磁场共线),并且 σ +