2022 年 2 月,陆军制定了计划,将在未来 10 到 15 年内将大部分非战术和战术车辆过渡为混合动力车辆,到 2050 年过渡为专门为野战而制造的全电动汽车。1 这一过渡将从非战术车辆 (NTV) 开始,即用于军事设施和非作战运输的卡车、轿车、公共汽车、货车和其他车辆。这方面的大部分要求可以通过采用现有或即将上市的商用车辆来满足。陆军战术轮式车辆 (TWV) 车队的过渡提出了更为复杂的挑战,这些车辆包括用于运送部队、装备、水、弹药和迄今为止的燃料的超轻型、轻型、中型和重型车辆,还可以进行侦察并提高部队的机动性。尽管如此,人们越来越意识到,商业电气化技术的发展正在取得进展,军队的电气化目标“相当容易实现”,甚至可能加速。2
太平洋司令部的责任区 (AOR) 在六个地理作战司令部中独一无二。太平洋责任区横跨 16 个时区,覆盖 1 亿平方英里,占地球表面的 52%。所涉及的地理区域和距离影响着空中、海上和陆地力量的应用和投射的每一次对话、情况和要求。太平洋地区拥有丰富的历史和独特的文化多样性,是世界一半人口和 3,000 多种语言的家园。1 包括美国在内,太平洋责任区涵盖 36 个国家,所有这些国家都希望促进自己的特定利益。因此,遥远的距离、广阔的地域、历史、文化多样性和各种政治公平性共同构成了一系列独特的区域挑战。然而,政治和文化问题只是其中的一部分。
图表目录 图 1: 海上环境 ................................................ 错误!书签未定义。 图 2: 澳大利亚报告位置 – 商船。 错误!书签未定义。 图 3: 群岛海道示例 ................................ 错误!书签未定义。 图 4: 澳大利亚皇家海军舰艇,悉尼 1913 ................................ 错误!书签未定义。 图 5: 海上护航 / 补给新几内亚 / 澳大利亚东部海岸 1942-1944 错误!书签未定义。 图 6: 盟军两栖作战新几内亚 1943-45 .......... 错误!书签未定义。 图 7: 美国海上战役太平洋 1942-1945 .......... 错误!书签未定义。 图 8: 英国皇家海军未来飞机运载机 ........... 错误!书签未定义。 图 9: HMAS 墨尔本号 ......................................................... 错误!书签未定义。 图 10: HMS 无敌号 ......................................................... 错误!书签未定义。图 11:1990-2003 年运营航空母舰的国家表 ................ ...
杰斐逊数字共享将这篇文章带给您免费和开放访问。Jefferson Digital Commons是Thomas Jefferson大学教学中心(CTL)的服务。Commons是杰斐逊书籍和期刊的展示,经过同行评审的学术出版物,大学档案馆的独特历史收藏以及教学工具。Jefferson Digital Commons允许研究人员和感兴趣的读者在世界任何地方学习并与Jefferson奖学金保持最新状态。本文已被杰斐逊数字共享的授权管理员接受,以纳入药理学和实验治疗学院的教师论文。有关更多信息,请联系:jeffersondigitalcommons@jefferson.edu。
图 1: 海上环境 ................................................. 错误!书签未定义。 图 2: 澳大利亚报告位置 – 商船。 错误!书签未定义。 图 3: 群岛海道示例 ................................. 错误!书签未定义。 图 4: 澳大利亚皇家海军舰艇,悉尼 1913 年 ................................. 错误!书签未定义。 图 5: 海上护航 / 补给新几内亚 / 澳大利亚东部海岸 1942-1944 年 错误!书签未定义。图 6: 盟军两栖作战新几内亚 1943-45 .......... 错误!书签未定义。 图 7: 美国海上战役太平洋 1942-1945 .......... 错误!书签未定义。 图 8: 英国皇家海军未来飞机运载机 ........... 错误!书签未定义。 图 9: HMAS 墨尔本号 ......................................................... 错误!书签未定义。 图 10: HMS 无敌号 ......................................................... 错误!书签未定义。图 11:1990 - 2003 年运营飞机运载机的国家表.................................... 错误!书签未定义。 图 12:1990 - 2003 年运营海上管制战斗人员的国家表 – 空战驱逐舰........................................ 错误!书签未定义。 图 13:D UTCH LCF – 典型的海上管制战斗人员........................... 错误!书签未定义。 图 14:联合攻击战斗机........................................................ 错误!书签未定义。
通过参数下转换(PDC)光子对提供的量子相关性是量子信息科学的强大工具。可以利用极化,空间和时频程度来产生强大而可验证的两光子纠缠[1-4]。这些相关性启用了诸如量子状态信息[5,6],设备独立量子密钥分布[7]和远程状态准备[8-12]等技术。为了利用这些资源来执行此类任务,有必要控制量子相关性的产生,并以期望的自由度开发一致的测量技术。光子学为实施多方量子通信协议和长距离量子实验提供了无可争议的平台[13 - 15],但每个光子自由度都带来相关的优势和挑战。尤其是时间频率的自由度,提供了高维量子字母,非常适合基于纤维的通信网络和集成的波导设备[3,14,16]。纠缠在PDC来源中也自然存在,并且可以使用脉冲成型技术和材料分散工程来控制[17]。然而,PDC状态的基本时间频率模式,也称为暂时的Schmidt模式[18],无法与传统的时间或频率测量值直接解析。最近开发了控制和操纵纠缠状态的时间模式结构的方法,为支持纠缠的光子技术提供了强大的资源[19 - 24]。但是,将这些方法应用于量子状态仍然没有探索。在这项工作中,我们使用量身定制的二分时量子量子相关性来远程准备光子时间模式状态。使用色散工程非线性光学和超快脉冲成型的浮动器工具箱,我们对自定义的时间模式进行投影测量,以对纠缠光子对的一半进行定制的时间模式,并测量其伙伴的条件谱图,如图1。我们通过实验探索PDC状态的相关时间模式结构,既有传统的时频相关性和工程性的脉冲时间模式钟形相关性。这样做,我们还证明了时间频率
换句话说,它包括求解对解决方案重量的线性系统。通常认为这种非线性约束使得对于t的合适值而言,平均H。在过去60年中花费了许多努力[PRA62,Ste88,Dum91,MMT11,BJMM12,MO15,BM17,BM17,BM18,CDMT22],即使在上述参数的范围仍然很困难,即使在Quantum com-com-com-com-com-com-com-peter [ber10 ber10 ber10,kt17]中也很困难。因此,解码问题引起了密码系统设计师的兴趣。今天,这是提交给NIST竞赛3的PKE和Signature方案的安全性的核心,例如Classic McEliece [AAB + 22],自行车[ABC + 22],Wave [BCC + 23]和Sdith [AMFG + 23]。研究解码问题的二进制版本很常见,但是非二进制案例也引起了签名方案波[DST19]或sdith [fjr22]的兴趣[BLP10,BLP11]或更常见的。波的安全性是
最近,美国陆军陆军指挥与控制研究所的工作人员听取了陆军指挥与控制现代化计划的简报。以下是该简报的简化版本。缩略词已减少到最低限度,系统的正式名称也以一般术语表示,以便简明扼要地概述陆军计划的重点。
该部门旨在研究和完善定向能技术及相关子系统,用于在多个平台上防御和进攻,以应对多个领域对海军资产的各种威胁。这包括支持杀伤力和作战评估的设计、分析和测试。基础和应用研究集中领域包括:
。CC-BY 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 7 月 6 日发布。;https://doi.org/10.1101/2024.03.06.583718 doi:bioRxiv 预印本