。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年2月5日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2024.04.15.589515 doi:Biorxiv Preprint
将人造模式添加到QR码之类的对象中可以简化诸如对象跟踪,机器人导航和传达信息(例如标签或网站链接)之类的任务。但是,这些模式需要物理应用,它们会改变对象的外观。相反,投影模式可以暂时更改对象的外观,协助3D扫描和检索对象纹理和阴影等任务。但是,投影模式会阻碍动态任务,例如对象跟踪,因为它们不会“粘在对象的表面上”。还是他们?本文介绍了一种新颖的方法,结合了预测和持久的物理模式的优势。我们的系统使用激光束(精神类似于激光雷达)进行热模式,热摄像机观察和轨道。这种热功能可以追踪纹理不佳的物体,其跟踪对标准摄像机的跟踪极具挑战性,同时不影响对象的外观或物理特性。为了在现有视觉框架中使用这些热模式,我们训练网络以逆转热扩散的效果,并在不同的热框架之间移动不一致的模式点。我们在动态视觉任务上进行了原型并测试了这种方法,例如运动,光流和观察无纹理的无纹理对象的结构。
Cellbricks GmbH在Cellbricks Therapeutics上,我们致力于对数百万处理损害器官功能的患者的生活产生重大影响。我们通过创新的生物打印组织疗法的创新生产来实现这一目标,从而通过恢复或支撑器官功能为人类提供更长和更健康的寿命。Cellbricks Therapeutics是一家生物技术公司,结合了合成生物学和3D-Bioprinting的世界领先专业知识。利用我们的专有生物制造技术和组织工程水平,我们正在大规模复制人体组织,以便研究人员和医生可以为患者提供更好的临床治疗。我们迅速成长的多学科团队由生物技术爱好者,科学家,博士学位,工程师,化学家和企业家组成,来自优秀的大学以及来自世界各地的顶级公司。我们的实验室和办公室位于欧洲启动首都柏林。
摘要 - 量词计算已被广泛应用于各个领域,例如量子物理模拟,量子机学习和大数据分析。然而,在数据驱动范式的领域中,如何确保数据库的隐私正在成为至关重要的问题。对于古典计算,我们可以通过手动添加噪声来结合差异隐私(DP)的概念,以满足隐私保存标准。在量子计算方案中,研究人员通过考虑量子噪声将经典DP扩展到量子差异隐私(QDP)。在本文中,我们提出了一种新颖的方法来满足QDP定义,通过考虑投影操作员测量产生的错误,该错误表示为射击声。然后,我们讨论可以通过镜头噪声实现的隐私预算数量,这是保护隐私保护水平的指标。此外,我们在量子电路中提供了带动噪声的量子噪声的QDP。通过数值模拟,我们表明射击噪声可以有效地提供量子计算中的隐私保护。索引术语 - Quantum计算,差异隐私,投影操作员测量
摘要:自Covid-19的出现以来,对新的日常案件和死亡的预测一直是全球政策环境和医疗资源管理中的重要因素之一。预测的一个重要因素是在人口水平上对易感人群和疫苗接种效率(VE)进行建模。由于广泛的病毒传播和广泛的疫苗接种活动覆盖范围,以有效和现实的方式对VE进行建模变得具有挑战性,同时还包括通过完全疫苗接种结合感染而获得的混合免疫。在这里,基于体外研究和公开数据开发了混合免疫模型。每天阳性病例的计算复制表明,在考虑混合免疫的效果时,复制和观察到的值之间的一致性很高。估计的阳性病例相对较大,而无需考虑杂交免疫力。复制日期案例及其比较将在人群层面提供有用的免疫信息,从而成为全国政策制定和疫苗接种策略的有用指导。
作者地址:Noah H. Oldfield,Simula 研究实验室和奥斯陆大学,挪威奥斯陆,noah@simula.no; Christoph Laaber,挪威奥斯陆 Simula 研究实验室,laaber@simula.no;陶岳,挪威奥斯陆 Simula 研究实验室,taoyue@gmail.com; Shaukat Ali,挪威奥斯陆 Simula 研究实验室和奥斯陆都市大学,shaukat@simula.no。
与在大脑发育过程中相比,通常认为成年大脑的电路形成是不存在的。然而,对神经系统疾病,成人出生,嫁接和再生神经元以及先天行为的研究表明,成年大脑保留了相当大的轴突生长和电路形成能力(1)。了解成人的基本机制或鉴定出新形式的电路形成将有助于进入健康和疾病中脑电路的组织。海马齿状回是一个大脑区域,可以通常观察到成年人中形成成年人,要么是成人出生的未成熟颗粒细胞(GCS)(GCS)(2)或癫痫相关的局部相关的局部苔藓纤维的整合,因此由成熟的GCS(3)(3)。由成人出生的GC形成的电路实际上与GC在开发过程中形成的电路几乎相同:GCS将其轴突,苔藓纤维,通过Hilus,通过Hilus到同侧CA3区域,并在不同的谷氨酸和GABAEGIC细胞上形成突触
量子力学的测量公设指出,在测量可观测量 ˆ o 时,只能观察到其特征值 on ,并且系统的状态将在测量之后立即投影到相应的特征态 | on ⟩ ,对于该特征态 ˆ o | on ⟩= on | on ⟩ 。此外,Born 规则规定,对于初始量子态 | ψ 0 ⟩ ,出现这种结果的概率为 pn = |⟨ on | ψ 0 ⟩| 2 。是否能够推导出该规则并将其从量子力学公设中剔除仍然是一个基本问题[1]。从量子信息处理的角度来看,这种谱投影的一般构造也具有实际意义。例如,参考文献[2] 构建了一种量子行走方法来实现这一点,并强调了其在执行优化问题的量子模拟退火 (QSA) 算法的关键步骤中的实用性[3]。后者可以作为绝热量子计算 (AQC) [4,5] 的替代方法。事实上,标准量子相位估计 (QPE) [6] 及其变体 [7–9] 也可以在系统不处于本征态时实现近似谱投影。QPE 在很多量子信息处理应用中都至关重要 [6],包括因式分解,以及与本文更相关的文献 [2] 中的量子行走谱测量,以及制备热吉布斯态的相关方法 [10–13]。标准 QPE 使用 O(tg) 个受控 c − U2k 形式酉门(k = 0 至 tg − 1)对相位值的 tg 个二进制数字进行编码(以 2π 为单位),并且它需要 O(t2g) 个门在逆量子傅里叶变换中检索相位 [6]。至于 QPE 的精度,为了使相位在 m 个二进制数字中准确,且成功概率至少为 1 − ϵ ,所需的辅助量子比特总数为 tg = m + log 2 (2 ϵ + 1 / 2 ϵ ) [ 6 ] 。换句话说,使用 tg 个辅助量子比特可以使相位值在 tg − log 2 (2 ϵ + 1 / 2 ϵ ) 二进制数字中准确。因此,相位的精度受到用于表示相位值以及用作光谱投影子程序时可用的辅助量子比特数量的限制
价值函数分解已成为在培训和分散执行范式下进行合作多代理增强学习的普遍方法。这些算法中的许多算法通过使用代理实用程序的单调混合函数来分配最佳的关节作用功能,以确保分散决策的关节和局部选择之间的相干性。尽管如此,利用单调混合函数也会引起表示局限性,并且在单调函数类别上找到无约束的混合函数的最佳投影仍然是一个开放的问题。在本文中,我们提出了QPRO,该QPRO对价值函数分解的最佳投影问题置于遗憾的是对不同过渡的投影权重的最小化。可以使用Lagrangian乘数方法放松和解决此优化问题,以遵守封闭形式的最佳投影权重,在该方法中,我们通过最大程度地减少预期收益的遗憾政策,从而缩小最佳和受限单调混合功能之间的差距,从而增强单调值函数分支。我们的实验证明了我们方法的有效性,表明在具有非单调价值函数的环境中的性能提高了。
1波茨坦气候影响研究所,德国波茨坦莱布尼兹协会成员;德国波茨坦Potsdam大学物理与天文学研究所,电子邮件:kluge@pik-potsdam.de。2 Wittgenstein Center(IIASA,VID/OEAW,WU)国际应用系统分析研究所,奥地利Laxenburg。3 Wittgenstein Center(IIASA,VID/OEAW,WU)国际应用系统分析研究所,奥地利Laxenburg;上海上海大学亚洲人口研究所,中国。4 Wittgenstein Center(IIASA,VID/OEAW,WU)国际应用系统分析研究所,奥地利Laxenburg。5社会科学学院社会学系,香港大学香港大学;维特根斯坦中心(IIASA,沃德/OEAW,吴)国际应用系统分析研究所,奥地利拉森堡。6 Potsdam气候影响研究所,德国波茨坦莱布尼兹协会成员。6 Potsdam气候影响研究所,德国波茨坦莱布尼兹协会成员。