离轴投影使投影仪放置具有显着的自由度,包括将投影仪正常放在挡风玻璃或极端角度以及仍然反射回眼箱的能力。离轴投影加上小包装量,使IP HOE显示出许多车辆的绝佳选择,而历史上并不是HUD的好候选者。跑车空间有限,高度倾斜的挡风玻璃,商用卡车以及带有近垂直挡风玻璃的高速公路车辆的跑车现在可以配备大型挡风玻璃显示屏。
摘要 — 用于在频域中对生物组织进行建模的体积积分方程通常会在高介电常数对比度和低频下出现病态。这些条件故障严重损害了这些模型的准确性和适用性,并使其尽管具有众多优点但仍不切实际。在本文中,我们提出了一个电通量体积积分方程 (D-VIE),当在生物兼容的单连接物体上计算时,它没有这些缺点。这种新公式利用仔细的光谱分析来获得体积准亥姆霍兹投影仪,该投影仪能够治愈两个病态源。特别是,通过材料介电常数对投影仪进行归一化允许对方程进行非均匀重新缩放,从而稳定高对比度故障和低频故障。数值结果表明这种新公式适用于真实的大脑成像。
摘要 我们提出了一个框架,将寻找最有效的量子态断层扫描 (QST) 测量集的方法公式化为一个可以通过数值求解的优化问题,其中优化目标是最大化信息增益。这种方法可以应用于广泛的相关设置,包括仅限于子系统的测量。为了说明这种方法的强大功能,我们给出了由量子比特-量子三元组系统构成的六维希尔伯特空间的结果,例如可以通过 14 N 核自旋-1 和金刚石中氮空位中心的两个电子自旋态来实现。量子比特子系统的测量用秩三的投影仪表示,即半维子空间上的投影仪。对于仅由量子比特组成的系统,通过分析表明,一组半维子空间上的投影仪可以以信息最优的方式排列以用于 QST,从而形成所谓的相互无偏子空间。我们的方法超越了仅有量子比特的系统,我们发现在六维中,这样一组相互无偏的子空间可以用与实际应用无关的偏差来近似。
由于自 1992 年以来进行的测试和特性分析工作,基于 DLP™ 技术的投影仪表现出优于竞争技术的可靠性和使用寿命。使用寿命估计超过 100,000 小时,且图像质量没有下降是常态。作为证据,TI 可靠性部门对 DLP™ 子系统和 DMD 芯片进行了持续的寿命测试。大屏幕电视在实验室中持续运行超过 10,000 小时,没有缺陷,也没有图像伪影。小型、便携、轻便的会议室投影仪在我们的可靠性实验室中运行了超过 26,000 小时,没有增加缺陷或图像质量下降。1995 年 12 月对 9 个 DMD 进行了测试,运行时间超过 56,500 小时,镜面循环次数超过 3x10 12(万亿次)(相当于典型办公室投影仪应用的 100 多年),没有出现任何缺陷。这些结果与建模预测相结合,支持了以下结论:DMD 极其坚固可靠。例如: • DMD MTBF > 650,000 小时 • DMD 寿命 > 100,000 小时 • 铰链寿命 > 3x10 12 镜面循环(相当于 >120,000 个工作小时) • 环境稳定性
最近有人争辩说,低维(甚至是一维)量子系统,将局部电路与局部测量结果混合在一起,可以充当量子记忆[1-7]。如果记录了测量结果的结果,则此过程可以保护非平凡的量子信息。在这里,我们研究了此过程的长期动态,以了解系统最终如何“忘记”,即,是否使用系统来存储量子信息,以及这些测量结果一定如何丢失信息。为了研究这种长时间的动态,我们忽略了空间结构。该系统仅由一个高尺寸n的单个希尔伯特空间组成,n均为n。我们的模型包括交替进行两个不同的步骤:第一,一个单一的演变,然后测量单个信息1,由等级N/ 2投影仪表示。我们还可以选择通过单一结合测量结果,因此可以通过在每个步骤中测量单个信息来描述模型,每次测量基础都会改变。因此,如果我们通过统一u 1演变,则测量投影仪P 1,然后按单位u 2进化,然后测量投影仪P 2,这是等效的,直至总体统一,以测量投影仪u†1 p 1 u 1,然后测量投影仪u†1 u†1 u†1 u†2 p 2 u 2 u 2 u 1。我们通过写下测量结果来跟踪量子轨迹,因此尤其是纯状态总是沿着此类轨迹演变为纯状态。我们考虑两个不同的情况,即我们称“多体”和“自由费米昂”。在多体案例中,被选为随机的单位。术语“多体”有点误称:我们有一些固定的高维希尔伯特空间,也许是通过张紧许多量子的量形成的,因此更好的术语可能是“高维单体”。尽管如此,我们仍然坚持使用多体一词。特别是,人们可能希望可以通过我们的HAAR随机测量值对张量的张量产物的足够深的量子电路进行[8-10]。在自由效率的情况下,希尔伯特空间是费米子的一个小空间,只允许测量为fermion biinears。
•存在于投影仪(或分发)已经过基因工程的生物图像的讲义(请参阅附件)。给学生片刻看图像后,问:“您是否在新闻中听到有关生物工程生物(植物,动物和细菌)的特定例子的消息?” “您知道的基因工程生物有哪些例子?” •让学生知道他们将观看两个简短的视频剪辑,以解决基因工程问题。第一个视频总体解释了遗传工程如何通过使用质粒和细菌分离和复制基因。第二个视频讨论了动物和人类克隆的基因工程,然后转向通过基因工程可能提高人类可能增强的问题。•在投影仪上存在两个视频片段:
大学想采用多感官方法。超过360°投影和围绕声音,其中包括温度,气味和振动。并进一步增强了冰屋,它利用了短发激光投影仪(在更狭窄的空间中获得激光投影仪的所有好处,不会损失图像质量和降低阴影)和定制的音响系统(可以模拟响亮的,动态的声音,例如在夜总会或夜间活动的战争区域中爆发出火力)。这是一个高级设施,增加了兴趣和参与度。可以确保RCR仿真实验室提供出色的多感觉沉浸式体验。