•科学发现:ASTS可用于分析和理解复杂的音频信号,从而在声学,神经科学和语言学等领域引起新的科学发现。•医疗应用:AST可以应用于医学研究,例如根据心脏,肺部或其他器官的音频信号诊断疾病。•教育工具:ASTS可用于开发教育音乐理论,语音疗法和其他与音频相关的学科的教育工具。总而言之,迅速训练的音频谱图变压器系统的开发有可能彻底改变音频处理和分析领域,并在各个行业和研究领域之间产生深远的影响
背景:通过手动听诊检测异常呼吸音的观察者间可靠性较差。带有人工智能 (AI) 的数字听诊器可以提高对这些声音的可靠检测。我们旨在独立测试为此目的开发的 AI 的能力。方法:儿科呼吸科医生根据音频回放和仔细的频谱图和波形分析,从儿童身上采集了 192 个听诊记录,分别标记为包含哮鸣音、爆裂音或两者都不包含,其中一个子集由第二位盲法临床医生验证。这些记录提交给专门经过训练以检测病理性儿科呼吸音的盲法 AI 算法 (StethoMe AI) 进行分析。结果:在优化的 AI 检测阈值下,Clinicloud 记录的爆裂音检测阳性百分比一致性 (PPA) 为 0.95,阴性百分比一致性 (NPA) 为 0.99;对于 Littman 收集的声音,PPA 为 0.82,NPA 为 0.96。哮鸣音检测 PPA 和 NPA 分别为 0.90 和 0.97(Clinicloud 听诊),对于 Littman 记录,PPA 为 0.80,NPA 为 0.95。
其次,数字(而非模拟)硬件的出现意味着系统可以调整到多个精确的频率,从而允许更多系统在同一区域内随时广播和通信。用音乐来打个比方,钢琴是一种模拟设备,有 88 个琴键,可以在七个八度音阶中演奏 12 个音符(另加四个音符)。这些音符总共包含 52 个音调和 36 个半音。然而,数字合成器可以动态地重新调音电子钢琴,使其演奏四分之一音或八度音的音乐,这样,在相同的八度音阶中,就可以演奏出数百个音符。此外,调整普通钢琴的音调需要手动逐个键进行,而数字化可以让软件快速实时地重新调音设备。同样,在 EMS 的给定频带内(类似于八度音阶),数字系统可以区分更多频率。
连接日期前 4 天——所涉及信息必须具有不影响系统功能、性能或操作的功能和性能。 c) 视频信号(带有内部音频)必须兼容 HDMI 标准并能够输入和输出。
在水下声学中,环境噪声和水下音景之间的关键区别在于,环境噪声是所有背景噪声,这些噪声是无法读取的所有背景噪声,而音景则包括环境中的所有声音(Cato,2018)。在水下声学社区中,正在进行的讨论,即将听众的感知纳入水下音景的定义,尤其是在行为生态学和不同音景下物种行为的变化的背景下。感知仅仅是特定动物可以收到的信号,我们从数学上从声源穿过SeawaTer传播的能力来达到听觉机制的能力以及从听觉机制的性质上进行生理学来计算。还是我们迈出了另一步骤,包括海洋动物对这些听觉信号的反应?前者与声景的空中定义保持一致(Grinfeder等,2022,以及内部的参考文献)。后者着重于人为声音对海洋环境的贡献,从而改变了海洋动物的行为。
在通信和其他电路中,通常需要产生一个精确的参考信号,其频率和相位可以实时精确控制。数控振荡器 (NCO) 非常适合此目的。对于某些应用,输出参考信号是方波,因此倾向于仅使用 NCO 输出的 MSB。这在电机控制器等低频应用中很有用,但对于大多数通信任务而言是不够的。这是因为该信号的零交叉可以在一个脉冲与下一个脉冲之间相差一个输入时钟周期,这会在输出中产生不可接受的抖动量。例如,如果 NCO 的时钟频率为 30MHz,则抖动为 33ns。对于 1MHz 方波,这会导致 12 o 的相位抖动。最直接的解决方案是使用 NCO,其性能要高得多
摘要 主要目标:回顾当前关于创伤性脑损伤 (TBI) 后构音障碍干预措施的文献,了解其有效性和方法学质量,并确定未来研究方向,以制定治疗该人群构音障碍的指南。研究设计:范围审查。方法和程序:搜索截至 2018 年 7 月的电子数据库,以查找治疗 TBI 后构音障碍的干预试验。三位审阅者评估文章是否符合以下标准:(1) 人群(仅 TBI 后患有构音障碍的成年人)和 (2) 干预研究。在最初确定的 1481 篇文章中,根据纳入标准选出了 17 篇。16 篇文章是单案例设计 (SCD),1 篇文章是队列研究。使用单案例实验设计 (SCED) 评分量表检查符合条件文章的方法学质量;对队列研究进行了定性描述。主要结果和成果:所述干预措施分为六大类 - 行为干预、假肢干预、工具干预、药物干预、辅助和替代沟通 (AAC) 以及混合干预。行为干预在文献中受到的关注最多。使用 SCED 评分的文章平均得分为 6.8,表明方法学质量中等。结论:该领域目前缺乏高质量研究。需要进一步研究以确定最佳临床实践。