_____________________________________________ *通讯作者。电子邮件addre ss:maussion@laplace.univ-tlse.fr电话:+33 7 85 49 94 60 60地址:2 Rue Charles Camichel,31000 Toulouse这项工作得到了巴基斯坦高等教育委员会的部分支持。M. Mohsin,A。Picot,P。Maussion与法国图卢兹大学INP Laplace,法国ToulouseUniversiaté(电子邮件:surname.name@laplace.univ-tlse.fr)
摘要:在工业4.0时代,实现生产优化并最大程度地降低环境影响已经变得至关重要。能源管理,尤其是在智能电网的背景下,在确保可持续性和效率方面起着至关重要的作用。锂离子电池由于其多功能性和性能而成为储能的领先技术。但是,准确评估其健康状况(SOH)对于保持网格可靠性至关重要。虽然排放能力和内部电阻(IR)通常使用SOH指标,但电池阻抗也为老化降解提供了宝贵的见解。本文探讨了电化学阻抗光谱(EIS)定义锂电池SOH的使用。通过分析不同频率的阻抗光谱,可以获得对电池降解的全面理解。使用EIS测量和等效电路模型(ECM),在各种放电条件下对圆柱LI -MN电池进行了生命周期分析。这项研究强调了衰老对电池特性的不同影响,强调了不同生命阶段的变化以及阻抗频谱每个区域的行为变化。此外,它证明了EIS的功效和该技术的优势与随着时间的推移跟踪SOH所使用的仅IR测量值相比。这项研究有助于促进对锂电池降解的理解,并强调EIS在确定其健康状况对智能电网应用方面的重要性。
此在线数据库包含1954年从1954年前进的温莎大学学生的博士学位论文和硕士学位论文的全文。这些文件仅用于个人研究和研究目的,根据《加拿大版权法》和《创意共享许可》(CCC BY-NC-ND)(归因,非商业,无衍生作品)。根据本许可,必须始终将作品归因于版权持有人(原始作者),不能用于任何商业目的,并且不得更改。任何其他用途都需要获得版权持有人的许可。学生可以询问从该数据库中撤回其论文和/或论文。有关其他查询,请通过电子邮件(scholarship@uwindsor.ca)或电话519-253-3000EXT与存储库管理员联系。3208。
1300小时LR7,IEB摘要:电化学阻抗光谱(EIS)是一种表征电化学系统的强大非侵入性工具。 应用于锂离子电池,EIS被证明是其最先进的(SOH)的信息指标。 但是,EIS受线性和平稳性的限制限制,而锂离子电池固有地以非线性和非平稳的方式行为。 关于线性,电极上的电压是电流通过电极的非线性函数。 线性是通过在操作点上应用零均值电流激发来实现的,因此非线性函数在该范围内是准线性的。 关于时间变化,充满电和完全放电的细胞的阻抗是不同的,对于原始和老化的细胞,或在室温和冰冻环境中保持的细胞相同。 对于锂离子电池,这意味着在特定的电荷(SOC)和温度下,应以稳定状态进行EIS实验。 因此,阻抗取决于工作点(温度和SOC),线性和平稳性的限制非常限制。 最近,我们开发了Operando EIS,以揭示无法满足线性和平稳性的测量结果。 该技术允许在一个随时间变化的轨迹上测量电化学系统的阻抗,例如,在充电或排放锂离子电池时。1300小时LR7,IEB摘要:电化学阻抗光谱(EIS)是一种表征电化学系统的强大非侵入性工具。应用于锂离子电池,EIS被证明是其最先进的(SOH)的信息指标。但是,EIS受线性和平稳性的限制限制,而锂离子电池固有地以非线性和非平稳的方式行为。关于线性,电极上的电压是电流通过电极的非线性函数。线性是通过在操作点上应用零均值电流激发来实现的,因此非线性函数在该范围内是准线性的。关于时间变化,充满电和完全放电的细胞的阻抗是不同的,对于原始和老化的细胞,或在室温和冰冻环境中保持的细胞相同。对于锂离子电池,这意味着在特定的电荷(SOC)和温度下,应以稳定状态进行EIS实验。因此,阻抗取决于工作点(温度和SOC),线性和平稳性的限制非常限制。最近,我们开发了Operando EIS,以揭示无法满足线性和平稳性的测量结果。该技术允许在一个随时间变化的轨迹上测量电化学系统的阻抗,例如,在充电或排放锂离子电池时。为此,使用了非零均值随机相多电流激发,并且从电压响应的光谱中估算了沿轨迹的时间变化阻抗。
[1] D.Faktorová,M。Kuba,S。Pavlíková和P. Fabo,“使用现代微控制器的阻抗光谱实施”,Procedia结构完整性,第1卷。43,pp。288-293,2023。[2] Q. Yao,D.-D.-C。 Lu和G. Lei,“具有低输出电压波动器上电源转换器上的精确在线电池阻抗测量方法”,Energies,第1卷。 14,否。 4,p。 1064,2021年2月。[3] P. Haussmann,J。J. Melbert,“使用电动汽车的标准电池管理系统通过阻抗光谱进行传感器单个细胞温度测量,” SAE技术文件2020-01-0863,2020。 报价和N. P. Brandon,“使用电动机控制器激发对电池阻抗的在线测量”,《 IEEE车辆技术交易》,第1卷。 63,否。 6,pp。 2557-2566,2014年7月。[5] A. Christensen和A. Adebusuyi,“在电池管理系统中使用板载电化学阻抗光谱,” 2013年世界电动汽车研讨会(EVS27),巴塞罗那,西班牙,西班牙,PP。。。288-293,2023。[2] Q. Yao,D.-D.-C。 Lu和G. Lei,“具有低输出电压波动器上电源转换器上的精确在线电池阻抗测量方法”,Energies,第1卷。14,否。4,p。 1064,2021年2月。[3] P. Haussmann,J。J. Melbert,“使用电动汽车的标准电池管理系统通过阻抗光谱进行传感器单个细胞温度测量,” SAE技术文件2020-01-0863,2020。报价和N. P. Brandon,“使用电动机控制器激发对电池阻抗的在线测量”,《 IEEE车辆技术交易》,第1卷。63,否。6,pp。2557-2566,2014年7月。[5] A. Christensen和A. Adebusuyi,“在电池管理系统中使用板载电化学阻抗光谱,” 2013年世界电动汽车研讨会(EVS27),巴塞罗那,西班牙,西班牙,PP。。2557-2566,2014年7月。[5] A. Christensen和A. Adebusuyi,“在电池管理系统中使用板载电化学阻抗光谱,” 2013年世界电动汽车研讨会(EVS27),巴塞罗那,西班牙,西班牙,PP。1-7,2013。
电化学系统的电化学阻抗光谱(EIS)数据的分析通常包括使用专家知识来定义等效电路模型(ECM),然后优化模型参数以反应各种抗性,能力,电感,电感性或扩散反应。对于小型数据集,可以手动执行此过程;但是,对于具有广泛的EIS响应的广泛数据集,手动定义适当的ECM是不可行的。对ECM的自动识别将基本上加速大量EIS数据的分析。 我们展示了机器学习方法,以分类由量子景观为电池派黑客马拉松提供的9,300个阻抗光谱的ECM。 最佳性能方法是利用库自动生成特征的梯度增强树模型,然后使用原始光谱数据进行随机森林模型。 使用Nyquist表示的布尔图像的卷积神经网络是替代的,尽管它的精度较低。 我们发布数据并开源关联的代码。 本文中描述的方法可以作为进一步研究的基准。 关键的剩余挑战是标签的识别能力,由模型性能和错误分类光谱的比较强调。 ©2023作者。 由IOP Publishing Limited代表电化学学会出版。 [doi:10.1149/1945-7111/acd8fb]对ECM的自动识别将基本上加速大量EIS数据的分析。我们展示了机器学习方法,以分类由量子景观为电池派黑客马拉松提供的9,300个阻抗光谱的ECM。最佳性能方法是利用库自动生成特征的梯度增强树模型,然后使用原始光谱数据进行随机森林模型。使用Nyquist表示的布尔图像的卷积神经网络是替代的,尽管它的精度较低。我们发布数据并开源关联的代码。本文中描述的方法可以作为进一步研究的基准。关键的剩余挑战是标签的识别能力,由模型性能和错误分类光谱的比较强调。©2023作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/acd8fb]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
电化学阻抗光谱(EIS)是锂离子电池健康诊断状态的有效技术,预计通过电池充电曲线预测阻抗光谱频谱预测有望在车辆操作过程中实现电池阻抗测试。然而,充电曲线和阻抗光谱之间的机械关系尚不清楚,这阻碍了基于EIS的预测技术的发展和优化。在本文中,我们通过电池充电电压曲线预测了阻抗光谱,并根据电化学机械分析和机器学习优化了输入。探索了充电曲线,增量容量曲线和阻抗频谱之间的内部电化学关系,从而改善了该预测的物理解释性,并有助于定义机器学习模型输入的适当部分电压范围。基于序列到序列的预测,已经采用了不同的机器学习算法来对所提出的框架进行验证。此外,评估了具有不同部分电压范围的不同部分电压范围的预测,并评估了不同的训练数据比,以证明所提出的方法具有较高的概括和鲁棒性。实验结果表明,适当的部分电压范围具有很高的精度,并且会收敛到电化学分析的发现。通过对电池内电化学反应的冠状分析选择的适当部分电压范围的阻抗光谱的预测误差小于1.9 m o。由Elsevier B.V.和科学出版社出版。即使电压范围降低到3.65–3.75 V,大多数RMSE的预测仍然可靠。2023年科学出版社和达利安化学物理研究所,中国科学院。这是CC下的开放式访问文章(http://creati- vecommons.org/licenses/4.0/)。
手稿收到2022年5月6日;修订于2022年7月5日; 2022年7月15日接受。出版日期2022年8月16日;当前版本的日期2022年9月8日。这项工作得到了欧洲领导力(ECSER)联合企业的电子组件和系统的支持(JU),根据赠款101007247; JU获得了欧盟2020年Horizon的研究与创新计划的支持,以及芬兰,德国,爱尔兰,瑞典,意大利,奥地利,冰岛和瑞士的支持。副编辑协调审核过程的是Chao Tan博士。(通讯作者:Roberta Ramilli。)Roberta Ramilli,Marco Crescentini和Pier Andrea Traverso在电气,电子和信息工程部(DEI),“ G。Marconi,“博洛尼亚大学,意大利博洛尼亚40136(电子邮件:Roberta。) ramilli@unibo.it; m.crescentini@unibo.it; pierandrea.traverso@unibo.it)。 Francesco Santoni,Alessio de Angelis和Paolo Carbone与佩鲁吉亚大学工程系,意大利佩鲁吉亚06125(电子邮件:francesco.santoni@unipg.it; Alessio.deangelis@deangelis@unipg.it; Paolo; Paolo; Paolo。 carbone@unipg.it)。 数字对象识别10.1109/tim.2022.3196439Marconi,“博洛尼亚大学,意大利博洛尼亚40136(电子邮件:Roberta。ramilli@unibo.it; m.crescentini@unibo.it; pierandrea.traverso@unibo.it)。Francesco Santoni,Alessio de Angelis和Paolo Carbone与佩鲁吉亚大学工程系,意大利佩鲁吉亚06125(电子邮件:francesco.santoni@unipg.it; Alessio.deangelis@deangelis@unipg.it; Paolo; Paolo; Paolo。carbone@unipg.it)。数字对象识别10.1109/tim.2022.3196439
b'abstract:钠离子电池(SIBS)是一种有前途的网格级存储技术,因为钠的丰度和低成本。为SIBS开发的开发是必须影响电池寿命和容量的,因此必须开发新的SIBS。目前,六氟磷酸钠(NAPF 6)用作基准盐,但具有高度吸湿性并产生有毒的HF。This work describes the synthesis of a series of sodium borate salts, with electrochemical studies revealing that Na[B- (hfip) 4 ] \xc2\xb7 DME (hfip = hexafluoroisopropyloxy, O i Pr F ) and Na[B(pp) 2 ] (pp = perfluorinated pinacolato, O 2 C 2 - (CF 3 ) 4 ) have出色的电化学性能。[B(pp)2]阴离子也表现出对空气和水的高耐受性。这两种电解质都比常规使用的NAPF 6具有更稳定的电极 - 电解质界面,如阻抗光谱和环状伏安法所示。此外,它们具有更大的循环稳定性和与NAPF 6的SIBS相当的能力,如商业袋细胞所示。
(2020 年 2 月 4 日收到;2021 年 4 月 2 日修订;2021 年 4 月 4 日接受) 摘要。本文介绍了一种使用四异丙醇钛作为钛源通过溶胶-凝胶技术生产二氧化钛 (TiO 2 ) 纳米粒子的新合成方法。使用 X 射线衍射 (XRD)、HRTEM、吸收紫外光谱、FTIR 和交流阻抗光谱等多种测量方法分析了合成的纳米粒子。利用 X 射线峰通过 Williamson-Hall 方法计算晶粒尺寸和晶格应变。使用 Scherrer 方程通过 X 射线衍射计算出的晶粒尺寸给出近似尺寸,不能用于测量。发现 TiO 2 纳米粒子具有四方结构,晶体尺寸约为 12 纳米。通过 HRTEM 图像确认了粒度。对纳米粒子的光学研究响应表明,TiO 2 纳米粒子的可能可见吸收峰为 323 nm。讨论了从紫外可见吸收光谱计算出的 TiO 2 纳米粒子的带隙能量 (E g ),带隙为 3.14 eV。FTIR 光谱显示了 Ti-O 网络的振动带。在不同温度下,在 1 至 8 MHz 的频率范围内研究了 TiO 2 纳米粒子的交流电导率特性。发现 TiO 2 纳米粒子的电导率在低角频率区域保持恒定。在不同温度和频率下分析了介电参数。关键词:电导率、介电体、纳米粒子、二氧化钛、结构研究