牙齿树脂复合材料由于能够模仿牙齿的自然外观而广泛用于恢复牙科[1]。这些材料由树脂基质和无机填充剂的混合物组成,这些混合物负责复合材料的机械性能。了解树脂复合材料的机械性能对于成功在牙科修复中的应用至关重要。在本文论文中,我们将探讨牙齿树脂复合材料的各种机械性能及其在临床性能中的重要性。此外,我们将讨论影响这些属性和该领域最新发展的因素。牙齿树脂复合材料旨在承受咀嚼和咬伤的力,同时与自然牙齿结构无缝混合。这些复合材料的机械性能在确定其耐用性,强度和对磨损和断裂的耐药性方面起着至关重要的作用[2]。了解这些特性对于牙科专业人员必须在修复过程中选择和应用树脂复合材料做出明智的决定[3]。除了传统的机械性能,例如抗压强度,弯曲强度和耐磨性外,最近的研究还研究了更复杂的特征,例如牙齿树脂复合材料的断裂韧性,微力学行为和抗疲劳性[4]。这些特性为临床环境中材料的寿命和适应性提供了宝贵的见解,使临床医生能够量身定制其治疗计划,以满足每个患者的特定需求[5]。
未经批准,不得对这些计划进行任何修改。 此标准计划仅限于单户住宅甲板使用。 所有工作应遵守圣地亚哥县修订和采用的现行加州建筑规范。 此计划必须附有符合地块平面图最低要求 (PDS 090) 制定的地块平面图。 最低施工规范 (PDS 081) 应与此计划结合使用。 防护装置和扶手 (PDS 075) 应与此计划结合使用。 活荷载 = 60 psf 甲板上不得施加任何重型集中荷载(如热水浴缸等)。 如果甲板由现有建筑支撑,则甲板下方的窗户、门或其他开口不得超过 4 英尺宽。 甲板的最大柱子高度应严格限制在 10 英尺。 甲板不得由悬垂物或悬臂支撑。 框架构件应为 2 号花旗松或更高级木材。 18 英寸范围内的甲板托梁和 12 英寸范围内的大梁应经过防腐处理。 防腐处理木材的紧固件应为热浸镀锌镀锌钢、不锈钢、硅青铜或铜。 从基础底部前缘到日光的水平距离至少应为 7'-0”。 基础混凝土混合物的最小抗压强度应为 f' c = 2,500 psi。
摘要 共烧结低温陶瓷的增材制造 (AM) 为制造新型 3D 射频 (RF) 和微波通信组件、嵌入式电子设备和传感器提供了独特的途径。本文介绍了有史以来首次直接 3D 打印低温共烧结陶瓷/浮动电极 3D 结构。基于浆料的 AM 和选择性激光烧蚀 (SLB) 用于制造带有银 (Ag) 内部浮动电极的块状电介质 Bi 2 Mo 2 O 9 (BMO,烧结温度 = 620 – 650°C,ε r = 38)。开发了一种可打印的 BMO 浆料,并优化了 SLB,以改善边缘定义并烧掉粘合剂而不会损坏陶瓷。SLB 增加了保持形状所需的生坯强度,生产出无裂纹的零件,并防止共烧结过程中银渗入陶瓷。烧结后,将生坯部件放入传统炉中烧结,温度为 645°C,烧结时间为 4 小时,密度达到 94.5%,抗压强度达到 4097 MPa,相对介电常数 (εr) 为 33.8,损耗角正切 (tanδ) 为 0.0004 (8 GHz)(BMO)。由此证明了使用 SLB 后进行打印后烧结步骤来创建 BMO/Ag 3D 结构的可行性。
羟基磷灰石(HA)由于其出色的生物相容性和生物学活性而广泛用于组织工程中。在这项研究中,使用无定形铝硅酸盐(AAS)对HA粉末进行了修饰。ha/AAS杂种是通过湿沉淀方法合成的。制备HA – AAS/壳聚糖 - 凝集素聚合物的复合材料,并使用X射线衍射测量法,傅立叶变换红外光谱,透射电子显微镜,扫描电子显微镜,孔径尺寸分布和表面积测量表进行表征。结果表明,具有棒状结构的HA和AAs的板是通过壳聚糖 - 胶质素网络连接到复合材料中的,从而导致由于聚合物涂层引起的特定表面积减少。AAS纳米颗粒含量较低的生物复合材料在3.1至7.3MPa的范围内表现出抗压强度,范围为0.11至0.21GPa,其范围内,该范围位于人类占用骨的范围内,其范围为2-12 MPa和0.05-0.5gpa,范围内。生物活性研究证明,复合材料样品增强了骨细胞细胞(MC3T3-E1)的增殖,并且比粉末样品表现出低的毒性。此类发现将未来用于取消骨骼应用的多功能材料阐明了Ha-AAS/壳聚糖 - 胶质素复合材料。
本研究采用新的基于增强的集合机学习模型,即梯度提升(GB)和自适应增强(ADABOOST),以预测地球聚合物稳定的粘土质土壤的无限制抗压强度(UCS)。使用270种用地质聚合物稳定的粘土式土壤样品开发并验证了GB和Adaboost模型,并用碎屑炉炉炉和粉煤灰作为源材料,氢氧化钠溶液作为碱性激活剂。数据库随机分为培训(80%)和测试(20%)集,用于模型开发和验证。使用了几个性能指标,包括确定系数(r 2),平均绝对误差(MAE),均方根误差(RMSE)和平均平方误差(MSE),用于评估开发模型的准确性和可靠性。这项研究的统计结果表明,GB和ADABOOST是根据R 2(= 0.980,0.975)的获得值(= 0.585,0.655),RMSE,RMSE(= 0.969,1.088)和MSE(= 0.940,1.185)的跨性别林地,相应地相差的,相应地相比,rmse(= 0.969,1.088),RMSE(= 0.969,1.088),RMSE(= 0.969,1.088),rmse(= 0.969,1.088),相应地相应地相比,梯度提升,多变量回归和基于多代基因编程的模型。此外,敏感性分析结果表明,地面抛光爆炸渣含量是影响UCS的关键参数。
伦敦,HA7 4LP,英国 摘要 采用多丝电弧增材制造 (MWAAM) 成功制备了 TC4/NiTi 多材料结构件。本文展示了仿生梯度夹层构建策略下 TC4/NiTi 多材料结构件的界面特征和力学性能。结果表明,获得了极限抗压强度为 (1533.33±26 MPa) 的 MWAAM TC4/NiTi 梯度异质合金。优异的压缩行为主要归因于梯度区的良好过渡,EBSD 分析表明梯度区的晶粒尺寸细小,差异施密特因子值较小。随着 NiTi 含量的增加,从 TC4 区到 NiTi 区的相组成依次演变为:α-Ti + β-Ti → α-Ti + NiTi 2 → NiTi 2 → NiTi 2 + NiTi → NiTi + Ni 3 Ti。梯度异质合金的显微硬度范围为310±8~230±11 HV,其中区域B处硬度最高,为669.6±12 HV,这是由于NiTi 2 强化相的析出所致;试样的极限断裂应力为1533.33±26 MPa,应变为28.3±6%;在10次加载/卸载循环压缩试验过程中,MWAAM TC4/NiTi梯度异质合金的不可回复应变逐渐趋近于2.75%。
自动纤维铺放 (AFP) 已成为航空航天工业中复合材料的流行加工技术,因为它能够在制造复杂部件时将预浸料或胶带精确地放置在准确的位置。本文介绍了用于复合材料飞机机身蒙皮制造的 AFP 心轴的设计、分析和制造。根据设计要求,开发了 AFP 心轴,并通过有限元法进行了数值研究。考虑了心轴结构自重和来自 AFP 机头的 2940 N 负载,进行了线性静态载荷分析。还进行了模态分析以确定心轴的固有频率。这些分析证实了所提出的心轴符合设计要求。然后制造了一个原型心轴并用于制造复合材料机身蒙皮。对 AFP 机身蒙皮曲面层压板、等效平面 AFP 和手工铺层层压板进行了材料载荷测试。平面 AFP 和手工铺层层压板在拉伸和压缩方面表现出几乎相同的强度结果。与手工铺层相比,平面 AFP 层压板的拉伸模量高 5.2%,压缩模量低 12.6%。AFP 曲面层压板的极限抗压强度比平面层压板高 1.6% 至 8.7%。FEM 模拟预测的强度比平面层压板测试结果的拉伸强度高 4%,压缩强度高 11%。
牧豆胶 (PRG) 是一种亲水性聚合物,可从非洲牧豆种子中获得。本研究调查了该胶在十二指肠靶向输送奥美拉唑中的应用。使用 5% 至 30% 的各种浓度的 PRG 通过湿法制粒配制奥美拉唑颗粒,并测定颗粒的流动特性。然后将颗粒压制成片剂。获得了片剂在 pH 1.2 溶解介质中以及 pH 5.5 下的释放曲线。将这些配方与含有 15% 羟丙基甲基纤维素的片剂进行了比较。发现颗粒的 Hausner 比率范围为 1.05 至 1.17,Carr 指数范围为 5.0% 至 14.0%。测试片剂的抗压强度范围为 6.2 至 6.9 kgf。含有 5%、10% 和 15% PRG 的配方在胃 pH 下表现出大量药物释放,因此只有极少量的药物到达目标部位(十二指肠),而含有 20% 和 30% 胶的配方在相当于十二指肠部位的 pH 下分别能够输送 76% 和 82% 的药物。这项研究表明,浓度为 20-30% 的 PRG(从非洲楝种子中提取)适用于奥美拉唑片剂的配方,从而提供一种靶向十二指肠输送药物的方法。
抽象的碳化硅陶瓷由于其高抗压强度,高硬度和低密度而被广泛用于装甲保护。在本研究中,开发了一种基于板块影响技术的实验技术来测量陶瓷材料的拉伸强度。由于陶瓷的强度不通过动态载荷对应变速率高度敏感,因此使e效率保持在失败位置保持恒定的应变速率。数值模拟被用于设计几种波动加工的板层的几何形状,该板在冲击时会产生脉冲形的压缩波,平滑的上升和下降时间范围为0.65至1 µs。这种减震板损坏的实验是在设定在200至450 m/s之间的撞击速度的SIC陶瓷上进行的。多亏了激光干涉法分析,目标后面速度可在给定的应变率载荷下测量均方根骨架强度。使用脉冲载荷和实验确定的脉冲强度,通过弹性塑料数值模拟评估了故障区中的应变速率。在适当的板板设计时,发现板撞击技术可以正确控制良好的应变速率载荷,左右在10 4 -10 5 s-1左右,可以达到相对较长的上升时间。这项工作有望提供合适的工具来研究陶瓷材料的高应变率行为。
摘要:这项研究研究了波特兰水泥粘贴的水合,微结构,自动收缩率,电阻率和机械性能与PEG-PPG Triblock共聚物进行了不同的分子量。使用VICAT测试和等温量热法检查了包括设定时间和水合热量在内的幼年特性。分别使用热重分析(TGA)和氮吸附分析了水合产物和孔径分布。使用压缩强度测试和电化学阻抗光谱(EIS)评估了机械性能和电阻率。表明,由于共聚物在共聚物的分子结构中存在疏水块(PPG),因此添加共聚物会降低水泥糊孔溶液的表面张力。在对照糊中的设定时间和水合热以及与共聚物修饰的粘贴相对相似。结果表明,共聚物能够减少糊状物中的自体收缩,这主要是由于孔隙溶液溶液表面张力的降低。TGA显示与共聚物修饰的糊剂的水合度略有增加。在与共聚物修饰的糊状物中降低了抗压强度,该粘贴量显示出空气量增加的共聚物。添加共聚物不会影响糊状物的电阻率,除非有大量的空气空隙(充当电绝缘体)。