引言胶质母细胞瘤多形(GBM)是一种侵略性和致命的脑肿瘤,尽管综合护理标准以及最大的手术切除,放射线和化学疗法。治疗GBM的一种潜在方法是免疫疗法;但是,尽管在其他几种类型的癌症中取得了希望的结果,但免疫治疗尚未对GBM有效(1)。在GBM中成功进行免疫疗法的主要挑战之一是高度免疫抑制肿瘤微环境,其特征是许多机械主义(2),包括低氧疾病(3)。因此,最近的研究集中在制定创新策略来克服这些挑战并提高免疫疗法的有效性(4,5)。嵌合抗原受体T细胞(CAR-T)治疗表现出对血液学恶性肿瘤的显着疗效(6)。然而,其治疗潜力仍然受到包括脑肿瘤在内的实体瘤的限制(5)。免疫细胞的代谢状态最近被认为是癌症免疫疗法的关键因素。糖酵解代谢对于效应T细胞至关重要,在线粒体中发生的氧化磷酸化(OXPHOS)对于记忆T细胞的高存活能力至关重要(7)。此外,已知在耗尽的T细胞中已知糖酵解和Oxphos会减少(8)。在肿瘤微环境中,缺氧条件和慢性抗原刺激迅速降低T细胞线粒体功能并导致衰竭(9)。因此,我们假设增强CAR-T细胞的线粒体功能可以阻止它们在GBM的低氧微环境中筋疲力尽。为了解决这一假设,在这项研究中,我们在输注前用代谢调节剂研究了CAR-T细胞的预处理,并检查了其转化潜力。
抽象的背景尽管在管理复发或难治性多发性骨髓瘤(RRMM)患者方面靶向B细胞成熟抗原(BCMA)的嵌合抗原受体T细胞(CAR-T)的结果令人鼓舞,但Cart-T细胞的治疗副作用和功能障碍限制了这种有望的方法的效率和临床应用。在这项研究中,我们将靶向PD-1的短发夹RNA盒纳入了具有OX-40共刺激结构域的BCMA车。在暴露于单个或重复的抗原刺激下,评估了转导的PD-1 KD CAR-T细胞的表面CAR表达,T细胞增殖,细胞毒性,细胞因子产生和亚群。在RRMM患者的I期临床试验中最初观察到安全性和功效。与亲本BCMA CAR-T细胞相比,PD-1 KD BCMA CAR-T细胞疗法显示,T细胞疲劳减少,体外记忆T细胞的百分比增加。在PD-1 KD BCMA CAR-T组中,还观察到体内更好的抗肿瘤活性。在七名RRMM患者的CAR-T细胞疗法的I期临床试验中,最初在所有七名患者中观察到安全性和功效,其中包括至少1名患者(4/7,57.1%),其中1例至少有1名患者和四名患者(4/7,57.1%),具有高风险的细胞遗传学。总回应率为85.7%(6/7)。四名患者有严格的完全反应(SCR),一名患者患有CR,一名患者有部分反应,一名患者患有稳定的疾病。的安全性,其发生率是轻度至中度细胞因子释放综合征,并且没有神经毒性的发生。结论我们的研究表明了独立于抗原特异性的CAR-T细胞的设计概念,并提供了提高CAR-T细胞疗法功效的替代方法。
抑制性受体NKG2A与CD94形成异二聚体,由〜50%的外周血NK细胞表达,并在NK细胞扩张后进一步上调[1]。此外,NKG2A是CD8+ T细胞上的晚期免疫检查点,在反复的抗原刺激和分裂后,它上调了[2]。NKG2A在耗尽的CAR T细胞上还发现了27天的T细胞输注[3]和CD8+肿瘤浸润T细胞[4-6]。有趣的是,NKG2A具有有效的抗肿瘤活性[7]。NKG2A通过其配体HLA-E的参与导致磷酸酶的募集和激活,这些磷酸酶抑制了NK细胞和T细胞激活[8]。 与健康组织相比,在多种癌症中高度表达了 HLA-E [4,9],并且已证明通过HLA-E逃避NK和CD8+ T细胞免疫[10]。 两项在癌细胞中采用CRISPR筛查的研究确定HLA-E是NK细胞的关键负调节剂:癌细胞相互作用[11,12]。 根据此,IFNγ信号传导与STAT1激活增加和HLA-E表达增强引起的NK细胞电阻有关[11]。 这在HLA-E的鼠同源物QA-1B也很明显,QA-1B的鼠同源物在所有测试的细胞类型上被炎症信号上调[13]。NKG2A通过其配体HLA-E的参与导致磷酸酶的募集和激活,这些磷酸酶抑制了NK细胞和T细胞激活[8]。HLA-E [4,9],并且已证明通过HLA-E逃避NK和CD8+ T细胞免疫[10]。两项在癌细胞中采用CRISPR筛查的研究确定HLA-E是NK细胞的关键负调节剂:癌细胞相互作用[11,12]。根据此,IFNγ信号传导与STAT1激活增加和HLA-E表达增强引起的NK细胞电阻有关[11]。这在HLA-E的鼠同源物QA-1B也很明显,QA-1B的鼠同源物在所有测试的细胞类型上被炎症信号上调[13]。
背景嵌合抗原受体(CAR)T细胞由于慢性抗原刺激引起的CAR-T功能障碍而在实体瘤中具有LIM临床功效,并且在肿瘤微环境中抑制信号。细胞因子介导的信号通过JANUS-激酶信号换能器和转录激活因子(JAK/STAT)途径已显示可调节T细胞分化,并增加效应子功能和持久性。我们假设可以部署合成生物学方法来确定通过调节特定JAK/STAT活性来改善治疗性T细胞功能的合成受体。在没有外部配体(称为合成途径激活剂(SPA))的情况下,旨在参与构成型JAK/Stat信号的合成受体库,并筛选为增强工程CAR-T细胞的抗肿瘤活性的能力。我们在集成的电路T细胞(ICT)中表达了Spa库,它们是表达逻辑门并通过非病毒CRISPR介导的转基因敲击生成的工程T细胞。我们通过流式细胞仪测量了急性和慢性肿瘤挑战测定法,cytokine产生,cyto-Kine产生,STAT磷酸化谱以及效应子/记忆表型的细胞毒性。随后在鼠异种移植肿瘤模型中测试了表达铅SPA的逻辑门构建体,以评估抗肿瘤功效和药代动力学。结果某些合成途径激活剂(称为I类水疗中心)表明,在体外慢性肿瘤挑战测定中,抗肿瘤功效提高,保留效应子功能,并在慢性抗原博览会上保持了茎的标记。这种改善的体外抗肿瘤功效转化为异种移植实体瘤模型中改善的细胞扩张和效力:表达SPA的细胞的剂量明显低于对照ICT细胞的剂量明显低于剂量。重要的是,尽管它们增加了增殖潜力,但表达水疗中心的ICT并未表现出细胞因子独立的产物,并在体内降低了肿瘤清除率。结论我们已经开发了一类SPA,可以参与组成型Stat信号传导,并显着增强临床前测定中治疗性T细胞的抗肿瘤活性。SPA-表达T细胞表现出增加的效应功能的膨胀和保留,从而完全清除了非常低的T细胞剂量的大型异种移植肿瘤。我们的铅I类水疗中心已纳入AB-2100,这是一种综合电路T细胞候选药物,旨在治疗透明细胞肾癌(CCRCC)。
在过去的15年中,我们目睹了对淋巴细胞及其在健康和疾病中的作用的迅速发展。传统上将外周淋巴细胞视为生物学活性有限的短活细胞,但循环淋巴细胞池非常清楚地被大量的淋巴细胞池组成,由各种起源,寿命,寿命,良好的结构特征,良好的结构特征和介导的免疫响应的细胞组成。 免疫机制可能会阻止Ehrlich在世纪之交(18)首次提出的潜在恶性细胞的发展,这是这种对淋巴细胞重新兴趣的最显着产物之一。 由Thomas(80)和Burnet(12)提出的免疫学监测的概念表明,长期活着的脊椎动物中经常降低表面抗原的肿瘤细胞的小数量,这些细胞被宿主的细胞免疫系统识别为外国,并通过免疫机制消除了这些细胞。 有力的证据证明了肿瘤转移的假设伴随着生化过程的改变,并且通过我们的小组成员充分提供了新表面抗原的出现(92)。 在此部分中,我们将讨论证据表明,含有肿瘤的宿主可以识别并应对这些新塑性变化。 我们将考虑毫无努力的某些方面,在癌症患者中检测到的免疫反应的适当性以及通过免疫疗法对这些恢复的潜在增强。传统上将外周淋巴细胞视为生物学活性有限的短活细胞,但循环淋巴细胞池非常清楚地被大量的淋巴细胞池组成,由各种起源,寿命,寿命,良好的结构特征,良好的结构特征和介导的免疫响应的细胞组成。免疫机制可能会阻止Ehrlich在世纪之交(18)首次提出的潜在恶性细胞的发展,这是这种对淋巴细胞重新兴趣的最显着产物之一。由Thomas(80)和Burnet(12)提出的免疫学监测的概念表明,长期活着的脊椎动物中经常降低表面抗原的肿瘤细胞的小数量,这些细胞被宿主的细胞免疫系统识别为外国,并通过免疫机制消除了这些细胞。有力的证据证明了肿瘤转移的假设伴随着生化过程的改变,并且通过我们的小组成员充分提供了新表面抗原的出现(92)。在此部分中,我们将讨论证据表明,含有肿瘤的宿主可以识别并应对这些新塑性变化。我们将考虑毫无努力的某些方面,在癌症患者中检测到的免疫反应的适当性以及通过免疫疗法对这些恢复的潜在增强。与我们的收费保持一致,这些评论大部分将仅限于考虑T淋巴细胞介导的免疫反应的考虑。临床证据表明,免疫机制在癌症的控制中可能起作用,来自多种来源,其中大多数表明患有抑郁症或无效免疫监视的患者的癌症发生率更高。在化学之前,恶性疾病患者经常表现出多种免疫缺陷(72)。可以证明免疫系统小于最佳(12),在极端的癌症发生率也很高。有人提出,在早期生命中,发育中的和未刺激的免疫系统通过环境中的“强”和“弱”抗原接受了大量的抗原刺激。
几十年来,人们一直在探索利用信使核糖核酸 (mRNA) 技术来研发流感、寨卡病毒、狂犬病和巨细胞病毒等传染病的疫苗。COVID-19 疫情加速了该技术作为疫苗平台的研究和开发,导致 mRNA 疫苗成为美国首个获得紧急使用授权并随后获批用于 SARS-CoV-2 的疫苗。用于预防 COVID-19 的 mRNA 疫苗已被证明是该技术的成功应用,然而,对于检测这些疫苗质量属性的指导仍然有限。一套标准的分析方法将为世界各地的疫苗开发商、制造商、监管机构和国家控制实验室提供支持,通过提供工具来帮助加速使用该平台开发安全有效的疫苗,并防止出现劣质和伪造的疫苗产品。根据各利益相关方确定的这一需求,USP 和我们的 BIO3 专家委员会制定了 mRNA 疫苗的通用章节草案,作为制定 mRNA 疫苗测试程序章节的第一步。本章节包括分析程序和最佳实践,以支持对 mRNA 疫苗的共同质量属性进行评估。本章节草案还以一般章节<1235>《人用疫苗——一般考虑因素》和<1239>《人用疫苗——病毒疫苗》中描述的最佳实践为基础。章节草案中的方法改编自公开来源,尚未经过 USP 的核实或确认。USP 和我们的 BIO3 专家委员会将提前发布章节草案以征求公众意见。通过提前发布,USP 希望征求利益相关者对参考文件中描述的方法的反馈,并鼓励提交与章节草案中提出的方法相关的任何替代方法和任何其他支持文件,包括验证文件。引言天然存在的 mRNA 是在真核细胞中通过 RNA 聚合酶转录细胞核中的 DNA 来产生的。 mRNA 分子从细胞核运输到细胞质,在那里它们作为模板,由核糖体翻译产生特定的蛋白质。通过这种方式,储存在细胞核中的信息被用来产生特定的蛋白质。这种 mRNA 不能产生除其编码的蛋白质以外的任何蛋白质。注射后,mRNA 的估计半衰期约为 8-10 小时,之后它会迅速降解并被体内的天然 RNase 分解。mRNA 不需要进入细胞核即可发挥作用。通常,可以通过在宿主(例如大肠杆菌)中扩增起始 DNA 质粒来制备 mRNA 疫苗药物物质。质粒在用于大规模生产 mRNA 中间体之前,需要进行酶线性化和纯化。在无细胞系统中,通过体外转录从线性化质粒 DNA 模板中产生 mRNA。根据具体的制造工艺,构建体用核苷优化以形成序列,转录的 mRNA 在 7-甲基鸟苷的 5' 端酶促加帽和/或在 3' 端用 poly (A) 酶促加尾。然后纯化 mRNA 药物物质并配制成药物产品。mRNA 疫苗药物产品可以是嵌入脂质纳米颗粒 (LNP) 中的 mRNA 制剂。LNP 保护 mRNA 免于降解并帮助 mRNA 通过内吞作用进入细胞。一旦进入内体,mRNA 疫苗分子就会逃离内体进入细胞质(取决于可电离脂质和 mRNA 核苷酸的摩尔比)并提供模板以产生多个病毒蛋白拷贝。病毒蛋白作为抗原刺激免疫反应,这是疫苗接种的预期结果。目前已开发出两种主要形式的 mRNA 疫苗:非复制型 mRNA 疫苗(常规)和自扩增型 mRNA (SAM) 疫苗,如下图 1 所示。常规非复制型 mRNA 疫苗构建体通常由 5′ 7-甲基鸟苷帽结构、5′ 非翻译区 (UTR)、编码蛋白质的开放阅读框 (ORF)、3′ UTR 和 3′ poly(A) 尾组成。SAM mRNA 疫苗源自 alpha 病毒基因组,其中 mRNA 分子编码可指导细胞内 mRNA 扩增的其他复制酶成分。在这两种形式的 mRNA 疫苗中,UTR 区域对于最大化蛋白质表达、mRNA 分子的 5′ 加帽、阻断核酸外切酶介导的降解和提高翻译效率都很重要。UTR、5' 帽和 poly(A) 尾也有助于稳定非复制型 mRNA 疫苗(常规)和自扩增型 mRNA (SAM) 疫苗,如下图 1 所示。常规非复制型 mRNA 疫苗构建体通常由 5′ 7-甲基鸟苷帽结构、5′ 非翻译区 (UTR)、编码蛋白质的开放阅读框 (ORF)、3′ UTR 和 3′ poly(A) 尾组成。SAM mRNA 疫苗源自 alpha 病毒基因组,其中 mRNA 分子编码可指导细胞内 mRNA 扩增的其他复制酶成分。在这两种形式的 mRNA 疫苗中,UTR 区域对于最大化蛋白质表达、mRNA 分子的 5′ 加帽、阻断核酸外切酶介导的降解和提高翻译效率都很重要。UTR、5' 帽和 poly(A) 尾也有助于稳定非复制型 mRNA 疫苗(常规)和自扩增型 mRNA (SAM) 疫苗,如下图 1 所示。常规非复制型 mRNA 疫苗构建体通常由 5′ 7-甲基鸟苷帽结构、5′ 非翻译区 (UTR)、编码蛋白质的开放阅读框 (ORF)、3′ UTR 和 3′ poly(A) 尾组成。SAM mRNA 疫苗源自 alpha 病毒基因组,其中 mRNA 分子编码可指导细胞内 mRNA 扩增的其他复制酶成分。在这两种形式的 mRNA 疫苗中,UTR 区域对于最大化蛋白质表达、mRNA 分子的 5′ 加帽、阻断核酸外切酶介导的降解和提高翻译效率都很重要。UTR、5' 帽和 poly(A) 尾也有助于稳定