FOI 23/243 – 氧化石墨烯是否用于辉瑞 Covid-19 疫苗请求 2023 年 4 月 3 日 我想根据信息自由权再次询问氧化石墨烯是否用于制造 Mrna 疫苗(特别是辉瑞疫苗) 链接来自 2020 年 4 月 7 日至 8 月 19 日的辉瑞文件 https://phmpt.org/wp-content/uploads/2023/02/125742_S1_M4_4.2.1-vr-vtr-10741.pdf MHRA 回复 2023 年 5 月 5 日 亲爱的,感谢您的电子邮件。您在请求中提到的文本与低温电子显微镜 (cryo-EM) 的样品制备有关,与疫苗的成分无关。这在提到的结论部分中有描述。 “通过低温电子显微镜确认,由 BNT162b2 编码的 P2 S 氨基酸序列的 DNA 表达的蛋白质处于融合前构象。该分析表明,抗原性重要的 RBD 可以呈现“向上”构象,其中受体结合位点富含中和表位,可在一定比例的分子中接触 (Zost 等人,2020 年)。“ 石墨烯与疫苗产品没有任何关联,相反,石墨烯是一种用于支撑生物样本的材料,有助于使用电子显微镜对 3-D 结构进行成像。这类似于显微镜上的玻璃载玻片与被研究的样本分离的方式。任何授权疫苗中均不含氧化石墨烯,每种疫苗中的辅料清单均可在该疫苗的《医疗专业人员信息》中找到。这些文件可在以下链接中找到: 辉瑞/BioNTech COVID-19 疫苗的监管批准 - GOV.UK(www.gov.uk) Vaxzevria(以前称为阿斯利康 COVID-19 疫苗)的监管批准 - GOV.UK(www.gov.uk) Moderna COVID-19 疫苗的监管批准 - GOV.UK(www.gov.uk) 公司必须披露《2012 年人类药物管理条例》中详细说明的活性物质和所有赋形剂。
在北美和欧洲,猪流感 A 病毒 (swIAV) 的控制很复杂,因为多种抗原性不同的 swIAV 毒株在野外共同传播,并且没有疫苗可以提供针对所有这些 swIAV 的广泛交叉保护。2017 年,第一种猪用减毒活流感疫苗 (LAIV) 在美国获得许可。该疫苗中的非结构蛋白 1 (NS1) 截短簇 I H3N2 毒株 A/swine/Texas/4199-2/98 NS1del126 (TX98 LAIV) 可提供针对异源北美簇 II 和 IV H3N2 swIAV 毒株的部分交叉保护。其对欧洲或较新的北美 H3N2 谱系的有效性仍有待研究。在本研究中,我们评估了对代表欧洲和北美主要 H3N2 swIAV 谱系的异源 IAV 的交叉保护水平。TX98 LAIV 可防止 2/4 头猪的北美 IV 型 H3N2 swIAV 鼻腔脱落和肺部复制,可防止 2/4 头猪的北美新型人型 H3N2 swIAV 大量鼻腔脱落,并将 1/3 头猪的欧洲 H3N2 swIAV 在下呼吸道的复制降低至最低滴度。尽管 TX98 LAIV 在血清中引发了针对同源病毒的中和抗体,在鼻腔和肺部引发的抗体较少,但未检测到针对异源 swIAV 的显著交叉反应抗体滴度。因此,部分交叉保护可能依赖于针对 swIAV 蛋白保守部分的细胞和粘膜免疫反应。由于 TX98 LAIV 可以对多种 H3N2 swIAV 提供部分保护,因此它可能是用于异源初免-加强免疫策略的合适初免疫苗。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
免疫疗法的基本问题是大多数类型的肿瘤中缺乏肿瘤特异性抗原,从而导致免疫耐受性。对于大约85%的微卫星稳定患者(MSS)结直肠癌(CRC),缺乏肿瘤新抗原会导致免疫疗法功效不佳。我们先前的研究表明,非蛋白酶脯氨酸(PRO)类似物氮氮杂氨酸-2-羧酸(AZE)的掺杂可能会产生突变的蛋白质,从而显着增强肿瘤细胞抗原性和抗肿瘤免疫反应。方法:为了激活更特异性的抗肿瘤免疫反应,副作用较少,我们利用了非蛋白质生成丝氨酸(SER)类似物β-N-甲基氨基氨基 - L-丙氨酸(BMAA),可以通过适当的速率将其用作Seryl TRNA合成酶将其掺入蛋白质中。BMAA掺入的新抗原,并在鼠CRC模型中选择了具有高抗原性的癌细胞富集肽,以制备基于BMAA的自组装纳米颗粒(SAN)。单细胞测序,以分析由SAN疫苗接种诱导的免疫反应,并结合Toll样受体7激动剂(TLRA)辅助和BMAA治疗。结果:San-TlrA接种BMAA治疗诱导了抗肿瘤免疫微环境。这种组合刺激了特定CD8 + T细胞的产生和靶向BMAA的IgG衰老的Neopitopes,最终促进了CRC鼠模型中的免疫激活,抑制肿瘤和延长生存率。这种方法为CRC免疫疗法提供了新的途径。此外,BMAA与SAN疫苗相结合,显着增强了免疫检查点抑制剂抗PD-1抗体的功效。结论:我们的发现提供了一种有前途的策略,用于使用BMAA人为地引入新抗原,这可以破坏免疫耐受性而不会破坏全身免疫平衡。
摘要Monkeypox病毒(MPXV)是一种引起人畜共患病的DNA病毒,对全球主要的公共卫生挑战提出了重大的挑战,死亡率在3%–6%之间。尽管天花疫苗提供了部分交叉保护,但对于专用,有效的蒙基毒(MPOX)疫苗的迫切需要。这项研究旨在设计一种基于多活蛋白肽的疫苗,该疫苗专门适用于在MPXV病例上升的东南亚人群中常见的HLA等位基因概况。使用免疫信息学,我们从MPXV细胞表面抗原和IFN-Alpha/beta受体蛋白中筛选并检测到B和T细胞表位。通过严格评估其抗原性,免疫原性,过敏性和毒性,以确保安全性和有效性来验证疫苗的设计。关键表位映射到HLA等位基因,包括HLA-A*11:01,HLA-A*24:02和HLA-B*15:02,在东南亚人群中非常普遍。分子对接分析表明,疫苗构建体与TLR3/TLR4免疫受体之间的相互作用稳定,这表明具有强大的免疫反应激活。此外,分子动力学模拟证实了疫苗受体复合物的结构稳定性。这种免疫信息驱动的多势疫苗设计为对抗MPXV提供了有前途的候选人,对东南亚人群具有很高的投影覆盖范围和免疫原性。建议在实验室和临床环境中进行验证以确认这些发现。自2022年5月以来,世界卫生组织(WHO)在全球范围内收到了越来越多的MPOX病例报告[3,4]。Keywords: bioinformatics, medicine, monkeypox, multi-epitope vaccine, vaccine Introduction Monkeypox (mpox) is a zoonotic disease caused by the monkeypox virus (MPXV; Poxviridae family) and causes symptoms similar to those of smallpox [1] The first case of mpox in humans was recorded in 1970 in the Democratic Republic of the Congo [2, 3].全世界有88,060例MPOX病例和147个与MPOX相关的死亡[5]。根据世卫组织,MPOX的死亡率约为3%–6%[6,7]。MPOX体征和症状包括淋巴结肿大,流感,皮疹,发烧和头痛[8]。肺炎,脑炎,视力威胁性角膜炎以及随后的
在埃及,纽卡斯尔病毒病毒(NDV)的基因型VII菌株在家用水禽中是温和的,被认为是储层。这是从鸭子中检测NDV GVII.1.1的第一份报告,显示出高死亡率和神经表现的严重临床体征,此外,对全HN和F基因进行了NDV和分子表征的分离。在当前的研究中,使用针对NDV和基质基因融合基因的禽流感染基因(AIV)的融合基因(AIV)研究了16个后院野鸭群羊群,通过实时RT-PCR研究了严重的神经迹象。14只鸭羊群测试的AIV阳性,只有两只羊群对NDV感染呈阳性。ndv,然后对全Hn和F基因进行测序。F和HN基因的系统发育分析表明,这些菌株用NDV基因型VII 1.1聚集。f基因具有特定的突变,将其聚集在一个新的分支中,与疏水性含量含量重复(HRC)相比,信号肽,N30S,T324A和480K在信号肽,N30S,T324A和480K中都聚集了它们。与从同一鸭的气管中分离出的菌株相比,从大脑分离的NDV的鸭子菌株具有N294K的N294K,这可能在跨越血脑屏障中起作用。HN蛋白具有特异性突变,将它们聚集在新的分支中,其突变为A4V,R15K在细胞质区域,跨膜结构域中的A28T和HRA中的S76L。此外,HN蛋白具有A50T,S54R T232N,P392S和T443V,并且在本研究中特异性的菌株中和菌株中检测到多个突变(N120G,K284R,S521T),可以改变病毒抗原性。当前的研究表明,NDV菌株从埃及循环的基因型VII持续演变,鸭子的致病性增加。目前的发现表明,迫切需要对鸭子和鹅进行疫苗接种,并用杀死的NDV疫苗疫苗,以减少因病毒感染而导致的经济损失,并防止向鸡有助于埃及控制ND控制的鸡的传播。
b细胞是自适应免疫系统的关键组成部分,并且在通过产生浆细胞和记忆细胞实现的病原体的长期病原体方面起着关键作用。浆细胞具有称为抗体的特定受体,这是体液免疫反应中抗原 - 抗体(AG -AB)相互作用的重要组成部分。尽管抗原通常更大,但抗体或B细胞受体特异性识别并与称为抗原决定剂或表皮的某些抗原区域结合(Jespersen等,2019)。抗体通过与它们的结合位点或副型的相互作用来识别这些区域,并在引发免疫反应中起着至关重要的作用(Jespersen等,2019)。因此,准确表征和识别B细胞表位(BCE)是用于开发基于表位的疫苗(Russi等,2018),疾病预防和免疫学诊断工具(Schellekens等人,2000年)。值得注意的是,已经表现出很高效力,选择性和安全性的治疗性抗体已在文献中进行了广泛的研究和报道(Kam等,2012; Manavalan等,2018; Potocnakova et al。bces是表面加速的氨基酸簇,基于它们的规范结构属于两个主要类别:连续(线性或顺序)和不连续(非线性或构象)(Atassi&Smith,1978; Jespersen et al。,2019; Potocnakova et al。,2016年)。序列决定了与顺序表位的抗体结合,并且不取决于抗原的三级结构。因此,顺序表位是称为抗原区域的蛋白质的小段。相反,与构象表位结合的抗体依赖于抗原的三维(3D)结构(Benjamin等,1984; Gershoni等,2007; Kulkarni- Kale等,2005)。大约90%的总BCE是不连续的,这意味着该序列中的残基彼此遥远,并通过蛋白质折叠在附近靠近,形成了功能性抗原性决定因素(Kringelum等,2013)。因此,没有关于AG - AB复合物的准确的高分辨率结构信息,而是识别停药的表位是具有挑战性的(Haste Andersen等,2006; Najar等,2017)。研究还表明,几组连续的表位毗邻与停止表位相邻,这模糊了连续和不连续的表位之间的界线(Galanis等,2021; Van Regenmortel,2006)。准确确定共同的BCES高度取决于抗原的3D结构(Jespersen等,2019; Raoufi等,2020; Sharon等,2014)。在下一代测序时代,由于测序技术的进步,已经对许多病原体进行了测序。需要在
乳腺癌干细胞 (BCSC) 或肿瘤起始细胞 (TIC) 是乳腺肿瘤中一小群动态亚群,是肿瘤起始、进展和转移的重要驱动因素 [Sridharan, Howard 等,(1,2)]。它们在组成性或获得性耐药或化学耐药中起着至关重要的作用,导致患者预后不良 (3)。在常规细胞毒性或放射治疗后,固有耐药和存活的 BCSC、非 BCSC 肿瘤和基质细胞构成微小残留病 (MRD) (3,4)。随后,这些 BCSC 扩增并经历多谱系分化并重新填充异质性肿瘤。复发的肿瘤具有高度侵袭性、可能具有交叉耐药性和高度转移性,预后不佳。 BCSC 具有先天或后天获得的化学耐药性,因为它们能够通过多种机制解毒或转运化疗药物。这使我们的重点转向选择性靶向 BCSC 或同时靶向 BCSC 和非 BCSC(大量肿瘤细胞),以克服化学耐药性并在转移性乳腺癌 (MBC) 患者中取得临床成功。应在 BCSC 中识别和靶向易受攻击的靶点或信号传导节点。重要的是,应确定生物学特性、维持干性的分子通路、诱导耐药机制、促进 BCSC 的可塑性 ( 5 )。可以采用数学建模方法来辨别 BCSC 及其生态位的行为 ( 6 , 7 )。此外,必须开发和定制纳米技术和靶向药物递送,以提高药物疗效并最大限度地减少患者的不良事件。在此特邀版中,Zhou 等人。 ,优雅地回顾了乳腺癌的细胞起源,以了解异质性、各种 BCSC 标志物、调节信号通路、微小 RNA 以及不同亚型 BC 的治疗策略。BCSC 还会重新连接其能量以增强其存活率 (8)。能量 CSC 是 BCSC 的一个子集,其表现出增强的增殖能力、增强的锚定非依赖性生长和醛脱氢酶阳性 (9,10)。Walsh 等人,回顾了使 BCSC 能够拨动能量开关以获得代谢可塑性的各种因素。针对这种代谢脆弱性将是抵抗 BC 干性的有效方法。氧化还原过程也在 BCSC 解毒外来生物和控制活性氧水平的活力中起着至关重要的作用。最近的证据表明,通过靶向氧化还原状态,BCSC 的间充质状态可以转换为上皮类型,而上皮类型对细胞毒性药物相对更敏感 (11)。BCSC 也能逃避免疫系统,但根据 Khandekar 等人的说法,它们具有强抗原性,使幼稚 CD8 + 效应 T 细胞能够消除 BCSC。挑战在于 CD8 + T 细胞在接触过程中失去活力或处于静止状态
圣地亚哥 — 2021 年 1 月 10 日 — Codex DNA, Inc. (NASDAQ: DNAY) 是开发按需合成基因和 mRNA 的自动化解决方案的领导者,该公司今天宣布与辉瑞达成战略合作和许可协议,以获取和进一步开发 Codex DNA 的新型 EDS 技术,以供辉瑞应用于其基于 mRNA 的疫苗和其他生物制药产品。该交易的财务条款包括辉瑞向 Codex DNA 支付的预付款,以及近期可能获得的基于成功的技术里程碑付款。Codex DNA 还有资格根据实现与根据协议开发和许可的 Codex DNA 技术开发的任何产品相关的特定开发、监管和商业化目标而获得额外的里程碑付款。根据该协议,辉瑞可以提前获得定制的、最先进的 Codex DNA 技术,包括使用其专有的短寡核苷酸连接组装 (SOLA) EDS 技术。 SOLA EDS 是一种正在申请专利的可持续、可扩展且具有成本效益的研究方法,旨在显著缩短构建合成 DNA、RNA 和蛋白质的时间,从而可能使基于 mRNA 的疫苗、治疗剂、个性化药物和其他生物制药产品的研发更加高效和有效。SOLA EDS 旨在快速高效地合成高保真度的复杂基因,这些基因可能用于测试合成传染病变体的抗原性并高效地生产 mRNA 候选疫苗。Codex DNA 首席执行官 Todd R. Nelson 博士表示:“我们相信,这一战略性的早期准入合作和许可安排是对我们尖端 SOLA 酶法 DNA 合成技术的验证,并有可能加速疫苗和生物治疗研究和开发计划,造福人类。”Codex DNA 的全自动台式合成生物学解决方案可以加快疫苗开发和生物药物发现的时间表。其 SOLA EDS 技术将集成到未来的 Codex DNA 仪器中,使客户能够在满足其生命科学和合成生物学需求的端到端解决方案中开始使用数字 DNA 序列数据进行实验。该公司将继续提供其合成基因组目录,包括 SARS-CoV-2,用于研究发现单克隆抗体治疗、小分子疗法、诊断检测和针对特定变体的新疫苗。关于 Codex DNA Codex DNA 正在使科学家能够为人类面临的许多最大挑战创造新颖的合成生物学解决方案。作为行业标准 Gibson Assembly® 方法和首个商业自动化台式 DNA 和 mRNA 合成系统的发明者,Codex DNA 正在实现快速、准确、为众多下游市场提供 DNA 和 mRNA 的可重复书写。该公司屡获殊荣的 BioXp™ 系统整合、自动化和优化了
4 灭活疫苗预防 SARS CoV-2 感染(covid-19)的安全性和免疫原性研究。试验号 NCT04352608。https://clinicaltrials.gov/ct2/show/NCT04352608。5 Walls AC, Park YJ, Tortorici MA 等人。SARS-CoV-2 刺突糖蛋白的结构、功能和抗原性。Cell 2020;181:281-292.e6。10.1016/j.cell.2020.02.058 32155444 6 Zhou P, Yang XL, Wang XG 等人。与可能源自蝙蝠的新型冠状病毒相关的肺炎疫情。Nature 2020;579:270-3。 10.1038/s41586-020-2012-7 32015507 7 朱娜、张丹、王伟等。中国新型冠状病毒调查研究组。2019 年中国肺炎患者中发现的一种新型冠状病毒。N Engl J Med 2020;382:727-33。10.1056/NEJMoa2001017 31978945 8 牛津大学。一项关于候选 COVID-19 疫苗 (COV001) 的研究。试验编号 NCT04324606。https://www.clinicaltrials.gov/ct2/show/NCT04324606 9 Mckay PF、Hu K、Blakney AK 等。自扩增 RNA SARS-CoV-2 脂质纳米颗粒疫苗诱导的临床前抗体滴度和病毒中和与康复的 COVID-19 患者相同。bioRxiv 2020.04.22.055608 [预印本] 2020. 10.1101/2020.04.22.055608 10 Moorlag SJCFM、Arts RJW、van Crevel R、Netea MG。BCG 疫苗对病毒感染的非特异性影响。Clin Microbiol Infect 2019;25:1473-8。10.1016/j.cmi.2019.04.020 31055165 11 Guallar-Garrido S、Julián E. 卡介苗 (BCG) 治疗膀胱癌:最新进展。 Immunotargets Ther 2020;9:1-11。10.2147/ITT.S202006 32104666 12 Miller A、Reandelar MJ、Fasciglione K 等人。普及 BCG 疫苗接种政策与降低 COVID-19 发病率和死亡率之间的相关性:一项流行病学研究。MedRxiv 2020.03.24.20042937 [预印本] 10.1101/2020.03.24.20042937。13 Dayal D、Gupta S。将 BCG 疫苗接种与 COVID-19 联系起来:附加数据。MedRxiv 2020.04.07.20053272。 [预印本] 2020,10.1101/2020.04.07.20053272 14 美国国家医学图书馆。https://www.clinicaltrials.gov/ct2/results?cond=COVID-19+&term=vaccine 15 Chumakov K, Gallo R. 旧疫苗能否成为新型冠状病毒的天赐之物?2020.https://eu.usatoday.com/story/opinion/2020/04/21/oral-polio-vaccine-has-potential-treat-coronavirus-column/5162859002/ 16 Young A, Neumann B, Mendez RF 等人。SARS-CoV-2 与麻疹、腮腺炎和风疹病毒中的同源蛋白结构域:MMR 疫苗可能提供针对 COVID-19 保护的初步证据。 MedRxiv 2020.04.10.20053207。[预印本] 2020.10.1101/2020.04.10.20053207
在许多研究中开发了,但是这些候选人都没有被批准为结核病计划。目前,重组分枝杆菌结核(MTB)融合蛋白纳米粒子的疫苗正在开发为新的TB疫苗原型。在这种新疫苗中使用了源自结核分枝杆菌细菌的早期分泌抗原靶靶6-kDa(ESAT-6)和抗原85C(AG85C)的两种免疫主导蛋白。将ESAT-6作为抗原的选择是因为该免疫主导抗原是在牛肉分枝杆菌BCG中删除的差异1(RD1)区域的一部分,并且已在疫苗中广泛探索。(4)尽管ESAT-6具有良好的抗原性,但ESAT-6免疫未能引起小鼠的足够T细胞反应。为提高免疫原性,它可以作为融合分子构造,其中大型免疫原子可以充当载体,如在ESAT-6和AG85B融合分子,TB10.4和AG85B融合蛋白以及TB10.4-AG85B-AG85B-AG855A多蛋白质中所证明的那样。(5,6)AG85C是一种免疫主导抗原,属于AG85复合物(AG85A,AG85B和AG85C)。ag85c对这种病原体的近40%的甲酸含量造成了奇异的责任,并导致其毒力。在儿童中,对AG85C的抗体反应比对AG85A和AG85B的抗体反应更好。(7)ESAT-6和AG85C抗原将作为由DNA Taging(C蛋白末端中的一系列氨基酸组氨酸)产生的融合蛋白产生。ESAT-6-AG85C-PolyHis TAG(EAH)抗原与脂质体辅助剂的融合预计将是结核病的潜在疫苗。该疫苗候选中的脂质体佐剂是可以诱导免疫反应的疫苗输送系统。脂质体具有库量效应,可促进疫苗的稳定性,完整性和逐渐释放。脂质体颗粒物也很容易通过抗原呈现细胞并激活免疫反应。(8)需要免疫原性测试来评估候选结核病疫苗的免疫反应。在疫苗发育的临床前阶段,免疫原性测定疫苗是在外周血单核细胞(PBMC)上离体进行的。在MTB感染中是一种细胞内细菌,具有更重要作用的免疫反应是细胞免疫反应。用于评估细胞免疫反应的免疫学参数是评估T细胞产生的细胞因子反应。T细胞产生的主要细胞因子之一是干扰素 - γ(IFN-γ),作为消除MTB的防御机制。(9,10)T细胞形式的细胞免疫反应在被MTB感染后1周内增加,如果通过密集(9,10)T细胞形式的细胞免疫反应在被MTB感染后1周内增加,如果通过密集