摘要:本文提出了一种考虑复杂舰船运动和风环境的舰载机自动着舰控制律,具体为预瞄控制与自适应非线性控制的综合策略。首先,在姿态控制环中采用增量非线性反步控制律,以提高飞机的抗干扰能力。其次,为提高恶劣海况下的下滑道跟踪性能,对舰载机运动进行预测,并将预测的运动引入最优预瞄控制制导律中,以补偿舰载机运动带来的影响。然而,预瞄控制本质上是一种最优控制律,需要建立状态空间模型,因此内环与外环控制的综合并不是那么简单。因此,需要对姿态-高度高阶系统模型进行低阶等效拟合,此外,还需要为低阶等效系统设计状态观测器,为着舰控制器提供所需状态。最后,为验证所提方法,以无人无尾机模型在不同海况下执行自动着舰任务,结果表明,自动着舰系统即使在恶劣海况下也能保证令人满意的着舰精度和成功率。
A 安培、面积、高度、埃 (Å)、处理系统天线孔径或天线 (英国) AFOTEC 空军作战 T&E 中心 A-799 无故障证据报告 A/G 空对地 A/A、AA、AA 空对空或防空 AGB 自主制导炸弹 AA-() 空对空导弹编号 () AGC 自动增益控制 AAA 防空炮兵 AGI 辅助通用情报 AAAA 美国陆军航空协会 (情报收集船) AAED 先进机载消耗性诱饵 AGL 高于地面 AAM 空对空导弹 AGM 空对地导弹 AARGM 先进反辐射制导 AGS 角门窃取导弹 (概念) AHWS 先进直升机武器系统 AAW 防空战 AI 人工智能、空中拦截或 A-BIT 自动内置测试机载拦截器ABM 吸气式导弹或 AIAA 美国航空与反弹道导弹协会 宇航 A/C 飞机(也称为 acft.) AIC 空中拦截控制 AC 交流电 AIM 空中拦截导弹 ACA 联合承包商协议或 AIRLANT 美国海军航空兵司令,空域协调区 大西洋舰队 ACAT 采购类别 AIRPAC 美国海军航空兵司令,ACCB 飞机配置控制委员会 太平洋舰队 Acft 飞机(也称为 A/C) AJ 抗干扰或抗干扰 ACLS 航空母舰着陆系统 A-Kit 系统的飞机接线套件 ACM 先进巡航导弹或空中(包括电缆、机架等,但不包括作战机动 WRA) ACQ 采购 AM 幅度调制 ACS 天线耦合器组 AMD 飞机维修部 ACTD 先进概念技术 AMES 先进多环境演示模拟器 A/D 模拟到数字 AMLV 先进存储器加载器/验证器 Ada 不是首字母缩略词。Ada 是 DoD Amp 放大器标准编程语言。 AMRAAM 先进、中程、空对空 ADM 先进开发模型导弹 ADP 自动数据处理或 ANSI 美国国家标准协会先进开发计划 ANT 天线 ADVCAP 先进能力 A 作战可用性 AEC 航空电子战(陆军) AO 声光 AEGIS 自动电子制导拦截 AOA 到达角、攻角或替代方案系统分析(类似于 AEL 可访问发射限值 COEA) AEW 机载预警 AOC 老乌鸦协会(专业 AF 天线因子、空军或音频 EW 协会)或合同授予 频率 AOT 仅角度跟踪、尾部角度或 AFB 空军基地或机身公告 目标捕获 AFC 自动频率控制或 APC 安费诺精密连接器或机身更换 装甲运兵车
A 安培、面积、高度、埃 (Å)、处理系统天线孔径或天线 (英国) AFOTEC 空军作战 T&E 中心 A-799 无故障证据报告 A/G 空对地 A/A、AA、AA 空对空或防空 AGB 自主制导炸弹 AA-() 空对空导弹编号 () AGC 自动增益控制 AAA 防空炮兵 AGI 辅助通用情报 AAAA 美国陆军航空协会 (情报收集船) AAED 先进机载消耗性诱饵 AGL 高于地面 AAM 空对空导弹 AGM 空对地导弹 AARGM 先进反辐射制导 AGS 角门窃取导弹 (概念) AHWS 先进直升机武器系统 AAW 防空战 AI 人工智能、空中拦截或 A-BIT 自动内置测试机载拦截器ABM 吸气式导弹或 AIAA 美国航空与反弹道导弹协会 宇航 A/C 飞机(也称为 acft.) AIC 空中拦截控制 AC 交流电 AIM 空中拦截导弹 ACA 联合承包商协议或 AIRLANT 美国海军航空兵司令,空域协调区 大西洋舰队 ACAT 采购类别 AIRPAC 美国海军航空兵司令,ACCB 飞机配置控制委员会 太平洋舰队 Acft 飞机(也称为 A/C) AJ 抗干扰或抗干扰 ACLS 航空母舰着陆系统 A-Kit 系统的飞机接线套件 ACM 先进巡航导弹或空中(包括电缆、机架等,但不包括作战机动 WRA) ACQ 采购 AM 幅度调制 ACS 天线耦合器组 AMD 飞机维修部 ACTD 先进概念技术 AMES 先进多环境演示模拟器 A/D 模拟到数字 AMLV 先进存储器加载器/验证器 Ada 不是首字母缩略词。Ada 是 DoD Amp 放大器标准编程语言。 AMRAAM 先进、中程、空对空 ADM 先进开发模型导弹 ADP 自动数据处理或 ANSI 美国国家标准协会先进开发计划 ANT 天线 ADVCAP 先进能力 A 作战可用性 AEC 航空电子战(陆军) AO 声光 AEGIS 自动电子制导拦截 AOA 到达角、攻角或替代方案系统分析(类似于 AEL 可访问发射限值 COEA) AEW 机载预警 AOC 老乌鸦协会(专业 AF 天线因子、空军或音频 EW 协会)或合同授予 频率 AOT 仅角度跟踪、尾部角度或 AFB 空军基地或机身公告 目标捕获 AFC 自动频率控制或 APC 安费诺精密连接器或机身更换 装甲运兵车
垂直起降(VTOL)是无人机(UAV)的基本功能。VTOL一方面可以拓展和增强无人机的应用领域,但另一方面也使得无人机控制系统的设计更加复杂。控制系统设计中最具挑战性的需求是实现固定翼无人机对控制指令满意的响应敏锐度以及确保飞机模态通道有效解耦。本文在气动分析的基础上,建立了含有力和力矩的六自由度(6-DoF)模型,并通过计算流体力学(CFD)数值模拟进行气动分析。提出一种基于扩张状态观测器(ESO)的改进比例微分(PD)控制器来设计内环姿态控制,增强了无人机系统对内外部不确定性的抗干扰能力。建立无人机运动方程,将运动方程分解为纵向和横侧两个独立运动分量,设计小扰动条件下的外环控制律;提出一种纵向高度通道总能量控制系统(TECS),将速度控制与航迹控制分离;横侧轨迹跟踪采用L1非线性路径跟踪制导算法,提高曲线跟踪能力和抗风能力。实飞实验数据证明了该方法的有效性。最后,设计了一种控制律。
摘要。雷达无疑是战场上最重要的传感器,可用于对飞行器进行预警和跟踪。采用 AESA 火控雷达的现代战斗机能够捕获和跟踪远距离目标,距离可达 50 海里或更远。然而,低可观测或隐形技术的普及对雷达能力提出了挑战,将其探测/跟踪范围缩小了大约三分之一。战斗机雷达的这种退化更为严重,因为大多数隐形威胁都针对更高的频段进行了优化,例如火控雷达的情况。因此,电磁频谱的其他部分已被重新考虑,例如红外辐射 (IR)。由于燃料燃烧、空气动力摩擦和红外反射,每架飞机都是红外源。这样,喷气式战斗机就可以在寒冷的天空背景下被红外传感器探测到。因此,IRST 系统重新出现,为雷达提供了替代方案。除了目标探测能力(无论是否隐身)之外,IRST 系统还具有被动操作、抗干扰能力和更好的角度精度。另一方面,它们容易受到天气条件的影响,尤其是潮湿,同时它们不能像雷达那样直接测量距离。本文探讨和比较了 AESA 雷达和 IRST 系统这两种方法的能力和局限性,也对传感器融合的优势提供了一些见解。
摘要 本文使用牛顿-欧拉法建立了配备机械臂的六旋翼飞行器的动力学模型,并研究了其稳定性。为了模拟干扰,使用了简化的摆锤法。这种六旋翼飞行器配置以前从未在科学论文中涉及过。所得模型是一个非线性、耦合和欠驱动的动力学模型,其中包括由于六旋翼飞行器配备机械臂而产生的空气动力学效应和干扰。本文的目的是全面研究使用简化摆锤法确定六旋翼飞行器的惯性矩,同时考虑到质量分布和重心变化的影响,这是六旋翼飞行器在空中运动期间机械手连续运动的结果。实验测试是使用 Solid Works 应用程序进行的,并使用 LabVIEW 进行评估,以便全面了解插入到动力学模型中的干扰。整个飞行器模型由四个经典的 PID 控制器驱动,用于控制飞行器的姿态和空间中所需轨迹的高度。这些控制器用于很好地理解如何评估和验证模型,使其成为抗干扰模型,此外,它们还易于设计和快速响应,但它们需要开发才能获得最佳结果。将来,将定义精确的轨迹,
在人类和机器人之间玩游戏已成为广泛的人类与机器人对抗(HRC)应用程序。尽管提出了许多方法来通过组合不同的信息来提高跟踪准确性,但仍需要解决机器人智能程度的问题以及运动捕获系统的抗干扰能力。在本文中,我们提出了基于自适应的增强学习(RL)多模式数据融合(ADARL-MDF)框架,教机器人手与人类一起玩摇滚纸 - 剪裁(RPS)游戏。它包括一种自适应学习机制,以更新整体分类器,一个RL模型,为机器人提供智力智慧,以及一个多模式数据融合结构,为干扰提供了阻力。相应的实验证明了ADARL-MDF模型的上述功能。比较精度和计算时间通过结合K-Nearest邻居(K-NN)和深卷积神经网络(DCNN)来表明集合模型的高性能。此外,基于深度视觉的K-NN分类器获得100%的识别精度,因此可以将预测的手势视为实际值。演示说明了HRC应用的实际可能性。该模型所涉及的理论提供了发展HRC智能的可能性。©2023作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
DSI 的保证定位、导航和授时 (PNT) 峰会将以“市政厅”式论坛的形式将军事部门、国防部、联邦政府、工业和学术界的成员聚集在一起,讨论 GPS 和天基 PNT 系统对作战人员以及美国及国外关键基础设施的整体弹性有多么重要。这次活动将让高层深入了解美国军方如何在将 PNT 融入其日常行动方面发挥领导作用,以及这些能力如何对军方塑造全球舞台、遏制侵略以及打赢战争(现在和将来)的能力至关重要。论坛与会者还将有机会了解国土安全部等政府机构正在采取哪些措施来了解和主动应对 PNT 服务被操纵时关键基础设施和网络中存在的漏洞。保证 PNT 峰会将审查陆军、空军和其他军种当前为整合新的 PNT 能力所做的努力,以帮助作战人员在所有作战领域保持准备就绪和弹性,同时解决现有 GPS 企业中的关键能力差距,对手正试图通过干扰/欺骗攻击来利用和瞄准这些差距。本次峰会还将探讨创新的新项目、系统和替代 PNT 技术,例如 MAPS/DAPS 系统、GPS 抗干扰 M 码和 NTS-3 卫星概念,所有这些技术都旨在改变传统
A/C 飞机 A/D 模拟到数字 AA 主动装甲 AAAV 先进两栖突击车 AAN 陆军下一代 AAW 主动气动弹性机翼 ABCA 美国-英国-加拿大-澳大利亚 ABIS 先进战场信息系统 ABL 机载激光器 ABS 基于代理的系统 ac 交流电 ACBL 两栖货物搁浅驳船 ACN 机载通信节点 ACTD 先进概念技术演示 ADC 声学设备对抗 ADCAP 先进能力 ADN 爆炸成分 ADW 代理击落弹头 AFATDS 先进野战炮兵战术数据系统 AFRL 空军研究实验室 AFSATCOM 空军卫星通信司令部 AFSPC 空军太空司令部 Ag 银 AGARD 航空航天研究与发展咨询小组 AGE 航空航天地面设备 AHM 反直升机地雷 AI 人工智能 AIEWS 先进综合电子战系统 AIM 先进 ISR 管理 AIN 陆军互操作网络 AJ 抗干扰 AJP 先进联合规划 Al 铝 ALC 空中后勤中心 ALEP先进激光护目镜 ALMDS 机载激光地雷探测系统 A-LOC 几乎失去意识 ALP 先进物流计划 AMC 陆军机动司令部 AMDS 先进地雷探测器系统
个人简介 Christopher Hegarty 是 MITRE 公司的技术研究员,自 1992 年以来主要从事 GNSS 的航空应用工作。他获得了 WPI 的电气工程学士和硕士学位以及 GWU 的电气工程博士学位。他目前是 RTCA, Inc. 的项目管理委员会主席,也是 RTCA 特别委员会 159 (GNSS) 的联合主席。他是 ION 和 IEEE 的研究员,也是教科书《理解 GPS/GNSS:原理和应用》第 3 版的联合编辑/合著者。 Ali Odeh 是 MITRE 公司的高级工程师。他获得了北卡罗来纳州立大学的电气工程学士和硕士学位。他在设计、开发和分析 GPS 接收器、GPS 抗干扰系统和无线通信系统的数字信号处理算法方面拥有超过 6 年的经验。 Karl Shallberg 是 Zeta Associates Inc. 的高级助理,自 2013 年以来一直担任 Zeta FAA GNSS 项目支持工作的项目负责人以及 Zeta Volpe PNT 频谱工程工作的项目负责人。自 1996 年以来,他一直在 GPS 接收器性能、干扰评估和系统工程问题等领域为 FAA GNSS 计划提供支持。他之前曾担任 Grass Roots Enterprises Inc. 总裁,并在美国政府开始了他的职业生涯。他获得了诺维奇大学物理学学士学位。Kyle Wesson 在 Zeta Associates 工作,并为 FAA 的 WAAS 项目办公室提供支持。他获得了