简介:B-2 是一种隐形、远程、穿透性核和常规打击轰炸机。它基于飞翼设计,结合了低空轰炸和高空气动力学效率。该飞机的混合机身/机翼可容纳两个武器舱,能够以各种组合方式携带近 60,000 磅。Spirit 于 1999 年 3 月 24 日在盟军行动中投入战斗,袭击了塞尔维亚目标。生产分为三个批次完成,所有飞机都升级到 Block 30 标准,配备 AESA 雷达。由于成本原因,产量限制为 21 架,随后一架 B-2 于 2008 年 2 月 23 日在安德森坠毁。正在进行的研究和开发旨在显著现代化 B-2A,以保持其对先进防空系统的穿透打击能力并提高机队的可用性。现代化包括航空电子设备和通信、发动机、隐形功能和先进武器。自适应通信套件 (ACS) 将提供时间敏感的任务更新和基于 Link 16 的抗干扰飞行任务重新分配,而 FAB-T 将添加宽带核 C2 和符合空域要求的 CNS/ATM。防御管理系统升级缩小了规模,削减了 EW 传感器以检测由于延迟而产生的地面威胁。DMS-M 提高了信号密集、反介入/区域拒止 (A2/D2) 环境中的生存能力,有助于态势感知,并能够实时避免威胁。RATS 将添加雷达辅助核精确制导,以应对 GPS 拒止打击。其他努力包括低观测
目的:提高太阳能热发电系统的效率和稳定性,促进太阳能热发电并网优化发展。方法:分析储热系统中换热器的工作原理,结合系统工艺要求,采用机理建模法建立换热器的数学模型。根据储热系统的固有特性和控制要求,提出控制方案,设计采用单回路控制、Smith预估补偿控制、串级-Smith控制、前馈-串级-Smith控制等不同控制算法的控制策略。建立仿真模型,得到不同控制系统的阶跃响应波形,全面分析比较不同控制策略的优缺点。结果:引入过热蒸汽质量流量扰动后,单回路控制系统误差增大,调整系统恢复振荡状态后,系统误差较大(10.24%)。 Smith预估补偿控制系统存在波动,峰值时间为548秒,峰值温度为366℃。级联Smith控制系统存在波动,峰值时间为620秒,峰值温度为398℃,最大偏差为31℃。前馈-级联Smith控制系统存在扰动,峰值时间为606秒,最小温度为347℃,最大偏差为4℃。与级联Smith控制系统相比,前馈-级联Smith控制系统的扰动偏差减小了87%。结论:提出的前馈-级联Smith控制系统具有抗干扰能力强、稳定性好、稳态误差小等优点,对聚光太阳能发电技术的发展具有一定的意义。关键词:太阳能,发电,并网,仿真。控制
AN/ARC-231 多模式机载无线电装置 (MARS) 是一种机载 VHF/UHF/LOS 和 DAMA SATCOM 通信系统,支持国防部 (DoD) 对机载、多波段、多任务、安全抗干扰语音、数据和图像数据传输的要求。该系统已成为整个国防部和我们许多国际盟友的航空部队事实上的通信系统。这种无线电的强大功能在满足军事飞行员的通信要求的同时,也使无线电的使用非常复杂 - 用户手册超过 794 页。这些问题推动了在各种训练类型和飞机平台上提供互动和引人入胜的培训的需求。本文旨在描述在开发 ARC-231 多波段无线电仿真时实施的策略,以支持多种类型的仿真,利用核心仿真和应用程序接口来适应不同的训练类型、用户要求和飞机平台。本文将解决 2009 年观察到的实施 ARC-231 无线电高保真仿真的市场需求、设计核心仿真的方法以及从项目开始实施的开放式架构方法所实现的各种类型的仿真。本文旨在分享实施 ARC-231 无线电模型背后的创新理念、通过这种方法为我们的客户节省的成本和时间,以及在整个实施和部署过程中获得的经验教训。使用这种方法,可以使用相同的核心模拟为各种客户开发多种类型的培训师。当客户发现并报告核心模型的问题时,所有客户都有机会通过接收其核心模拟模型的更新从集体测试中受益。
摘要 AN/ARC-231 多模式机载无线电装置 (MARS) 是一种机载 VHF/UHF/LOS 和 DAMA SATCOM 通信系统,可满足国防部 (DoD) 对机载、多波段、多任务、安全抗干扰语音、数据和图像数据传输的要求。该系统已成为整个国防部以及我们许多国际盟友的航空部队事实上的通信系统。这种无线电的强大功能在满足军事飞行员的通信要求的同时,也使使用变得非常复杂 - 用户手册超过 794 页。这些问题推动了对跨各种训练类型和飞机平台提供交互式和引人入胜的训练的需求。本文旨在描述在开发 ARC-231 多波段无线电模拟器时实施的策略,以支持多种类型的模拟,利用核心模拟与应用程序接口一起包装,以适应不同的训练类型、用户要求和飞机平台。本文将讨论 2009 年观察到的市场需求,即实施 ARC-231 无线电的高保真模拟、设计核心模拟的方法以及从项目开始实施的开放式架构方法所实现的各种模拟。本文旨在分享实施 ARC-231 无线电模型背后的创新理念、通过这种方法为客户节省的成本和时间,以及在实施和部署过程中获得的经验教训。使用这种方法,我们可以使用相同的核心模拟为各种客户开发多种类型的训练器。当客户发现并报告核心模型的问题时,所有客户都有机会通过接收其核心模拟模型的更新从集体测试中受益。
在芬顿样反应中,高价值的钴氧(CO IV = O)由于高氧化还原电位,长终生和抗干扰性能而引起了人们的兴趣,但其产生受到电子富含牛的氧气和含量富含氧气和含量中心的影响。在这里,我们使用situ co k-gede X射线吸收光谱中的钴单原子催化剂(co-SACS)激活过多氧硫酸盐(PMS)激活中co iv = o,并辨别出co iv = o的生成依赖于支持的(f f i)。像抗解酶-TIO 2一样支持高W f值,通过提取co-d电子来促进PMS末端 - 氧气 - 配体与CO位置的结合,从而降低了关键中间体的产生屏障(Co-ooso 3 2)。在PMS激活期间,锚定在氧化酶-tiO 2(共旋转2)上的CO原子表现出增强的CO IV = O co IV = O磺胺甲恶唑(SMX)降解的出色活性。CO-TIO 2 /PMS系统中CO IV = O的归一化稳态浓度比自由基的稳态浓度高三个数量级,比其他Co-SACS /PMS系统中产生的稳态浓度高1.3至11倍。co-tio 2 /pms在连续流动运行下以最小的CO 2+浸出持续效率地去除SMX,这表明其吸引人的水纯度潜力。总体而言,这些结果强调了支持选择的支持选择的显着性,以增强支持金属囊中的高价值金属氧和有效的PMS激活。2024科学中国出版社。由Elsevier B.V.和Science China Press出版。所有权利都保留,包括用于文本和数据挖掘,AI培训和类似技术的权利。
简介 美国陆军的增强型位置报告系统 (EPLRS) 旨在通过数字数据通信系统支持战场上的战术行动。EPLRS 采用抗干扰波形,内置安全数据单元,以保护数据安全和时分多址 (TDMA) 架构。态势感知数据链 (SADL) 是将 EPLRS 无线电装置整合到飞机上。通过修改软件以与飞机航空电子设备接口,EPLRS/SADL 与飞机航空电子设备集成,以在驾驶舱中显示来自其他配备 SADL 的战斗机的数据、通过 Link 16/SADL 网关来自 Link 16 网络的数据以及地面 EPLRS 位置。以下表示 SADL 的主要功能: 1.整合空对空 (A–A) 战术和态势感知 (SA) 能力,例如: a. 飞机之间的互操作性,将飞机内部信息添加到网络上,供其他飞机访问和显示 b.支持多轨道目标环境,将飞机内部雷达轨道、传感器和目标指定信息添加到网络上,供其他飞机访问和显示。c. 空对空网络类型允许在特定“空中密钥”中的飞机之间交换平台性能、系统状态和传感器/目标数据 2.整合空对地 (A–G) SA 能力,例如: a. 飞机和地面网络之间的互操作性;这允许 SADL 飞机从地面 EPLRS 网络请求“友军”地面部队的位置数据。3.注意:当前无线电版本 11xy 不再支持名为“WinFAC”的应用程序。从数字前方空中管制员 (FAC) 消息中整合 A–G 战术和 SA 功能,例如:a. 近距离空中支援 (CAS) 飞机和地面前方空中管制员 (GFAC) 之间的互操作性,允许 GFAC 以数字方式发送目标位置数据。正在开发的 TACP-Mod 数字 CAS 应用程序“TACP-CASS”基于可变消息格式 (VMF),并且仅通过 ASOC 网关与 SADL 通信,该网关由 JRE 托管的 SADL 网关和 MIDS 终端以及连接到“将 VMF 转换为 J 消息的 ASOC 桥”的联合射程扩展 (JRE) 托管的 PRC-117F 组成。
简介:B-2 是一种隐形、远程、穿透性核和常规打击轰炸机。它基于飞翼设计,结合了低空轰炸和高空气动力学效率。该飞机的混合机身/机翼有两个武器舱,能够以各种组合方式携带近 60,000 磅。精神号于 1999 年 3 月 24 日在盟军中投入战斗,袭击了塞尔维亚目标。生产分为三个批次完成,所有飞机都升级到 Block 30 标准,配备 AESA 雷达。出于成本和政治考虑,建造数量被限制在 21 架,随后一架 B-2 于 2008 年 2 月 23 日在安德森坠毁。飞机现代化的重点是保障 B-2A 在高端威胁环境中的穿透打击能力,但由于项目延迟,防御管理系统升级以提高生存能力被削减。B-2 机队最近完成了 VLF/LF 改装,以确保在核打击任务中全球范围内安全、可生存的 C2。Flex Strike 升级还增加了数字接口,通过提供 GPS 制导预释放来阻止干扰,以集成现代化的 B61-12 核武器。名义上的第 2 阶段将使常规运载具有类似的能力。目前正在开发的雷达辅助瞄准系统 (RATS) 最终将允许 B-2 利用雷达在 GPS 拒止环境中引导核武器。正在进一步努力增加装载量、改进加固/埋地目标打击能力,并整合射程更长的 JASSM-ER 巡航导弹。正在进行的升级包括更换主驾驶舱显示器、自适应通信套件 (ACS) 以提供基于 Link 16 的抗干扰飞行中重新任务、先进的 IFF、坠毁后可存活的数据记录器和武器集成。美国空军还致力于通过对涂层、材料和雷达吸收结构(如机鼻雷达罩和发动机进气口/排气口)进行低可观测特征改进来提高机队的可维护性。2021 年 9 月 14 日,一架 B-2 在怀特曼的一次着陆事故中受损。美国空军计划在 2032 年左右 B-21 突袭机投入使用并达到足够数量后退役该机队。
LiDAR是在1960年Theodore Maiman发明红宝石激光器之后才被广泛认可的,从技术革新来看,LiDAR经历了四个阶段。1960年,Theodore Maiman和他的同事在休斯研究实验室将高功率闪光灯照射在红宝石棒上,触发了一束相干光:第一束激光器。由于激光具有亮度好、方向性好、抗干扰等特点,激光技术被广泛应用于测距。与一般的测量方法相比,它具有精度高、分辨率高、体积小、使用方便、全天候等优点,在对地观测、环境监测、侦察等领域发挥着重要作用。同其他技术一样,激光也引起了军方的重视,很快美国军方就开始了军用激光装置的研究,第一台军用激光测距仪在1961年通过了军方试验,很快就投入了实用化。1971年,美国军方首创了世界上第一台红宝石激光测距系统:AN/GVS-3,这台第一代测距仪由光电倍增管探测器和红色外宝石光激励器组成,由于存在体积大、重量重、功耗大等缺点,很快就被第二代测距系统所取代,该测距系统采用近红外钕激光器(主要是Nd:YAG激光器)和PIN光电二极管或雪崩光电二极管,体积更小,功耗更低。随着这项技术的日趋成熟,随着20世纪70年代YAG激光技术的成熟,应用于长、中、短程激光测距雷达已成为必然趋势,1977年美国研制成功第一台手持式小型激光测距仪。 Nd:YAG激光测距仪:AN/GVS-5型,特点:尺寸与标准7-50军用望远镜相当,总重量只有2kg,适合手持使用,20世纪70年代末到80年代中期,激光测距仪成为军用激光市场上最大的采购项目[10]。起初激光测距主要用于军事和科研,在工业仪器中很少见,因为激光测距传感器太贵,一般在几千美元,高昂的价格一直是阻碍其广泛使用的主要原因。然而,由于技术的重大进步,价格已降至几百美元,使得它有可能成为一种具有成本效益的测量仪器。
空中客车意大利公司在设计、集成和测试方面拥有丰富的经验,为欧洲主要项目提供服务,例如 METOP-Second Generation、QUANTUM、BIOMASS、Galileo、Pléiades NEO 和 EDRS ISL 的 LEO 卫星设备。在其发展历程中,该公司还为 ARTEMIS、Radarsat 2、COSMO-SkyMed、Alphasat TDP#5 做出了贡献,并积极参与意大利的主要项目,例如 SICRAL、PLATiNO、ItalGovSatCom。空中客车意大利公司是机载卫星通信技术领域的领导者,为机构客户提供最先进的移动终端 Janus Aero,用于 ISR 任务。意大利空军的 ATR P-72A 飞机配备了空中客车意大利公司的 Janus 天线,空中客车通信、情报和安全部门也将其视为“天空网络”(NFTS) 的强大解决方案,并成功与空中客车 MRTT 飞机集成,进行了联网空中战场场景的飞行演示。此外,该公司在铁路应用的卫星通信终端方面拥有丰富的经验,曾为整个欧洲的高速列车(例如法国 TGV 列车)提供卫星通信解决方案。Airbus Italia 的产品组合还包括用于低地球轨道卫星的卫星间链路和有效载荷 EO 数据传输设备、无源和有源射频组件、天线辐射元件、用于配置和监测电信灵活有效载荷频谱的地面操作软件、用于数字信号处理和调制解调器的地面和飞行固件、空间架构和安全航天器的关键推动因素。产品组合可分为四个主要宏观领域: - 系统工程(例如天线和射频无源设备、飞行信号处理固件、地面操作软件等) - 连接产品(例如 EDRS Ka-ISL 任务接收器、多业务卫星收发器、紧凑型光学终端等) - 卫星通信移动解决方案(例如用于机载、铁路和陆地应用的移动终端、Janus 产品线) - 安全性和弹性(例如用于安全通信的地面调制解调器、通信频谱监控、抗干扰)有效载荷工程和装配、集成和测试能力完善了其资产;位于罗马的 1,200 平方米的装配集成和测试设施主要用于验证和鉴定用于空间应用的机载和地面组件、设备和子系统。
简介:B-2 是一种隐形、远程、穿透性核打击和常规打击轰炸机。它基于飞翼设计,结合了低空飞行和高空气动力学效率。飞机的混合机身/机翼可容纳两个武器舱,以各种组合方式可携带近 60,000 磅。B-2 于 1999 年 3 月 24 日在盟军行动中投入战斗,袭击了塞尔维亚目标。生产分为三个批次完成,所有飞机都升级到 Block 30 标准,配备 AESA 雷达。出于成本和政治考虑,建造数量限制为 21 架,随后一架 B-2 于 2008 年 2 月 23 日在安德森坠毁。飞机现代化的重点是保障 B-2A 在高端威胁环境中的穿透打击能力,但由于项目延误,旨在提高生存能力的防御管理系统升级被削减。 B-2 机队最近完成了 VLF/LF 改装,以确保在核打击任务中实现全球范围内安全、可存活的 C2。Flex Strike 升级还增加了数字接口,通过提供 GPS 制导预释放来阻止干扰,从而整合现代化的 B61-12 核武器。理论上的第 2 阶段将使常规运载具备类似的能力。目前正在开发的雷达辅助瞄准系统 (RATS) 最终将允许 B-2 利用雷达在 GPS 拒绝的环境中引导核武器。目前正在进一步努力增加装载量,改进加固/埋地目标打击,并整合射程更长的 JASSM-ER 巡航导弹。正在进行的升级包括更换主驾驶舱显示器、自适应通信套件 (ACS) 以提供基于 Link 16 的抗干扰飞行中重新任务、先进的 IFF、可存活的数据记录器和武器集成。美国空军还致力于通过对涂层、材料和雷达吸收结构(如机鼻雷达罩和发动机进气口/排气口)进行低可观测特征改进来提高机队的可维护性。2021 年 9 月 14 日,一架 B-2 在怀特曼的一次着陆事故中受损。美国空军计划在 2032 年左右 B-21 突袭机投入足够数量后退役该机队。