其中: ,K = 表面最小允许应力,AN/m2F p= 考虑排水的折减系数 p = 1.0(若无排水、排水无法使用或下游表面出现开裂) p = 0.4(若使用排水)。γ = 水的单位重量,AN/m3F h= 水面以下深度,AmF = 升力面材料的抗拉强度,AN/m2F SF= 安全系数 安全系数 3.0 应用于通常情况,2.0 用于非常情况,1.0 用于极端荷载组合。根据 USBR (1987),只要地震事件后满足应力和稳定性标准,极端条件下允许开裂,但新建大坝的通常和非常情况荷载均不允许开裂。
最常用的塑料材料是环氧基树脂,制造商根据其特性以及在测试和可靠性鉴定下的表现,使用多种配方。一个重要特性是离子纯度,这对设备可靠性很重要。添加剂吸气剂用于去除移动离子并提供高抗拉强度以消除爆米花。制造商根据多种特性对环氧模塑料 (EMC) 进行评级和选择。尽管不同制造商的目标通常相同(高设备/封装可靠性和性能),但由于芯片设计、半导体工艺、组装设备、可靠性测试和鉴定方法及结果各不相同,因此使用的 EMC 通常不同。
金属在受到重复的循环载荷时会出现疲劳损坏。每个循环中的应力大小不足以在单个循环中导致失效。因此,需要大量的循环才能导致疲劳失效。重要的是,疲劳裂纹在远低于金属单调抗拉强度的应力水平下成核和生长。裂纹以非常小的量连续前进,其增长率由载荷大小和部件的几何形状决定。人们对钢的疲劳进行了大量研究。在此背景下,首先简要描述了碳钢和低合金钢中的主要微观结构以及这些微观结构的相变。随后,描述了疲劳机制的一些基本方面的知识,特别强调了疲劳寿命预测方法的发展。
激光粉末床熔合 (L-PBF) 使 Glenn Research Copper 84 (GRCop-84) 能够通过增材制造 (AM) 制造出低混合电流驱动发射器组件,Glenn Research Copper 84 (GRCop-84) 是一种具有高抗拉强度和导电性的 Cr 2 Nb 沉淀硬化合金。由于构建体积限制,需要对通过激光焊接连接在一起的模块化段进行 AM 制造。开发了一种夹具系统,用于对准和压缩 0.5 毫米厚的对接焊缝,用氩气保护内表面,并防止组装过程中发生变形。外部夹具和夹板对准发射器部分,同时为脉冲 1070 nm 光纤激光器提供光束通道,而内部微型千斤顶在波导段内膨胀,消除连接部分之间的高度偏移并分配氩气保护气。传导模式焊接可防止形成锁孔和光束穿透波导内部,消除飞溅并产生光滑的底部焊道。顶面的表面粗糙度为 R a =2.34 µm,底面的表面粗糙度为 R a =3.17 µm。焊缝的平均 UTS 为 476 MPa,与 900°C 5 小时热处理后的 520 MPa UTS 相似。DOI:PACS 编号:I. 简介 Glenn Research Copper 84 (GRCop-84) [1], [2] 是一种铌铬化物 (Cr 2 Nb) 8 原子%Cr、4 原子%Nb [3] 沉淀硬化合金,适用于采用激光粉末床熔合 (L-PBF) 的增材制造 (AM) [4],[5],[6],[7],[8]。 L-PBF GRCop-84 的热导率在 260 W/m∙K [5] 到 300 W/m∙K [6] 之间(OFC 的 75%-84%),电阻率为 2.5 µΩ∙cm [9],为无氧铜 (OFC) 的 140%,屈服强度为 500 MPa,打印状态下的 UTS 为 740 MPa,伸长率为 20% [4],经 450°C 热处理 (HT) 后屈服强度增加到 810 MPa,UTS 为 970 MPa,伸长率为 9%,或经 900°C HT 后屈服强度降低到 300 MPa,UTS 为 520 MPa,伸长率为 26-37% [10]。与挤压或热等静压 (HIPing) [12] 粉末固结相比,L-PBF [11] 过程中细化沉淀物尺寸可提高强度,因为 2/3 的抗拉强度来自 Orowan 机制 [13]。高抗拉强度和稳定的沉淀物可用于火箭发动机 [5],[6],[7],[8] 或聚变反应堆 [14],[15] 的高温。高热导率和与 Nd:YAG 和光纤激光器的耦合不良 [16] 增加了传统铜合金的表面粗糙度和空隙率 [17]。GRCop-84 的 L-PBF 可实现全密度(> 99.9%)[4],平均垂直侧壁粗糙度为 Ra =3-4 μm [18]。通过机械抛光 [18] 或化学机械抛光 [20],[21],AM GRCop-84 的表面粗糙度[19]降低至 Ra <~0.3 μm,在 4.6 GHz 下实现低损耗。由于 14 vol% Cr 2 Nb [7],[11] 增强了 GRCop-84 的 AM,近红外激光的低温吸收得到了改善。
摘要:本文介绍了一种利用激光添加剂在SS316L基体表面制备95% IN718+5%(75% Cr 2 O 3 + TiO 2 )陶瓷涂层的方法,分析了金属基复合材料的宏观形貌、物相、微观组织、界面、耐磨性和抗拉强度。结果表明,金属基复合材料(MMC)层状复合材料与单一材料相比具有良好的微观硬度和耐磨性。与单一IN718材料的对比分析表明,层状复合材料表现出优异的微观硬度和耐磨性。此外,研究还揭示了材料硬度与耐磨性之间呈正相关的关系,其特点是随着材料硬度的增加,磨损系数和平均磨损量降低。本研究结果为生产高耐磨涂层复合材料提供了一种经济高效、实用的方法。
3真空弧已被研究很长时间,不确定。在1900年,该电子被发现5年前被发现,人们在空气中“理解”了崩溃,但想知道是否可以在真空中保持更高的田地。A.A. Michelson没有真空泵,但可以在较小的距离上查看BD,而不是电离长度。他发现崩溃仍在固定的地面场发生。这项工作是由R. Millikan扩大的,他研究了各种实验细节。凯尔文勋爵认为崩溃是由于:静电力〜抗拉强度。他假设了大型田野增强。我们也提出了这个论点。尽管已经研究了超过100年的真空故障,但预算大量,但大部分努力旨在对组件而不是ARC物理学进行质量控制。我们的数据和建模使我们朝着不同的方向发展。
I _ 重心线惯性矩,单位为英寸。M“”静矩,单位为英寸。截面模量,单位为英寸。r - 回转半径,单位为英寸。r _ 纤维中弯曲应力,单位为磅/平方英寸。fb .... 网的抗拉强度,单位为磅/平方英寸。E _ 强度,单位为磅/平方英寸。L _ 纤维长度,单位为英尺。I _ 纤维长度,单位为英寸。W、WI、W_由梁支撑的上压载荷,单位为磅。w ~上压载荷,单位为每单位长度或面积的磅。Wouu _ ~给定点的最大载荷,单位为磅。R、Rl _Buppo r t 点处的反作用力,单位为磅。V _垂直!!.1 磅。M、~h、M_给定点处的弯曲力矩,单位为英寸磅。
过去二十年来,氧化石墨烯 (GO) 一直处于碳纳米材料研究的前沿。由于其独特的性能,例如表面积大、抗拉强度高、存在可修饰的表面基团以及良好的生物相容性,石墨烯衍生物已用于扩展多个研究领域,包括电子学、材料科学、非线性光学和生物技术。[1–8] GO 正式衍生自石墨烯,石墨烯是单层碳原子以二维六边形晶格键合而成。[9,10] 石墨的化学氧化和剥离会产生 GO 表面基团,例如羧基、羟基、环氧基和羰基,为共价结合生物分子、药物或荧光团提供了绝佳的机会。这些基团的确切组成和数量是可变的,取决于合成途径。[2,11] 化学
当前工程技术的发展要求高精度、高质量、高生产率的制造系统,以满足当前工业需求。这为开发符合制造所需产品特定标准的新型高效加工工艺创造了独特的机会。使用传统加工工艺很难加工硬度、强度、韧性、柔韧性等性能显著提高的新材料 [1,2]。UMP 提供了生产具有复杂设计要求和精确尺寸特征和参数的相对较新材料的组件和形状的前景。混合材料的快速增长和设备的小型化建议使用高精度、无缺陷加工来满足所需的效率。具有韧性、抗拉强度、抗压强度、弹性等更高物理性能的复合材料和合金已广受欢迎,因为它为满足当今众多领域的需求提供了有效的解决方案,例如应用热电
可持续结构是一个重要的研究领域,特别是对于预期人类在月球或火星上长期存在而言。人类在月球上持续存在将需要已经存在于月球基地建造现场的建筑材料。任务有效载荷中与加固金属(钢筋)相关的高成本使得必须探索用于持久月球基地的替代加固方法。人类头发具有很强的抗拉强度,可用于任何长期任务。通过使用原本浪费的头发代替重金属,可以降低任务有效载荷和成本。针对一系列不同水泥成分测量了混凝土的可加工性、抗压强度和孔隙率。这些成分由普通波特兰水泥 (OPC)、月球风化层、去离子 (DI) 水和人类头发组合而成。发现随着头发浓度的增加,可加工性和孔隙率增加。抗压强度随着头发浓度的增加略有下降。