抗生素耐药细菌的兴起是全球健康问题,由于这些抗性感染,到2050年,每年预计每年将超过100万人死亡。世界卫生组织(WHO)已经确定了十二种关键的抗生素病原体,包括抗性霉素肠球菌(VRE),例如肠球菌(E.粪便)。vre引起严重的医院可获得的感染,例如心内膜炎和败血症,并对多种抗生素产生了抗药性,强调了对新的抗菌治疗的迫切需求。应对这一危机,由日本千叶大学科学研究生院的Takeshi Murata教授领导的研究人员团队发现了一种有希望的新化合物V-161,有效地抑制了VRE的增长。他们的研究检查了在这些细菌中发现的一种称为Na +传输V-ATPase的钠泵化酶,该酶在E. hirae中发现,E. hirae是粪肠球大肠杆菌的亲戚,用作研究酶的更安全,更可拖动的模型。该团队由Chiba University科学研究生院的第一作者Kano Suzuki助理教授组成;奇巴大学医学真菌学研究中心的Yoshiyuki Goto副教授;高能加速器研究组织结构生物学研究中心的Toshiya Senda教授和Toshio Moriya副教授;国立自然科学研究所的分子科学研究所的Ryota Iino教授。Murata博士解释说:“这种酶有助于将钠离子从细胞中泵出,有助于VRE的生存,尤其是在像人类肠道这样的碱性环境中。这项研究于2024年11月21日在自然结构和分子生物学上发表,假设Na +传输V- ATPase在开发抗生素的发展中可以发挥关键作用,该抗生素专门针对VRE而不影响有益细菌。这种酶在像乳杆菌等有益细菌中不存在,尽管人类具有相似的酶,但它具有不同的功能。这使得VRE中的Na +传输V -ATPase成为选择性抗菌治疗的理想目标。”他进一步指出:“我们筛选了70,000多种化合物,以鉴定酶Na + -V -ATPase的潜在抑制剂。在其中,V-161是一个有力的候选人,在碱性条件下降低VRE生长方面表现出显着的有效性,这对于这种抗性病原体的生存至关重要。”此后,进一步的研究表明,V-161不仅抑制了酶功能,而且还降低了小鼠小肠中的VRE定植,突出了其治疗潜力。这项研究的主要发现是对酶的膜V 0结构域的高分辨率结构分析,揭示了对V-161如何与之结合并破坏酶功能的详细见解。v-161靶向酶的C形环与A-subunit之间的界面,有效地阻断了钠转运。这种结构信息对于理解化合物的起作用至关重要,并为开发针对该酶的药物提供了基础。Murata博士解释说:“从结构分析获得的发现可用于开发其他难治性细菌的治疗方法,也为制定未来药物开发的重要准则构成了基础。”他进一步补充说:“我们希望不仅为VRE进行创新治疗的发展,而且多种耐药细菌将大大推动对耐药性感染的治疗。”
1 https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6631375/pmc6631375/#b91-pathogens-08-00050 2 https://rrr-asia.woah.orgg/wp-content https:/ https://www.galvmed.org/livestock-and-diseases/livestock-diseases/contagious-bovine-pleuropneumonia/4 https://wwwww.ncbi.ncbi.nlm.nlm.nih.gov/pmc/pmc/articles/pmc/articles/pmc6830973)5 https://www.frontiersin.org/articles/10.3389/fvets.2019.00452/full 6 https://pubmed.ncbi.nlm.nih.gov/27362766/ https://www.cambridge.org/core/books/challenges-to-tackling-antimicrobial-resistance/ role-of-vaccines-in-combating-antimicrobial-resistance/E1D9C2CB252F0BB79C2314E12E5E480B 9 https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2109.2010.02726.x 10 https://bvajournals.onlinelelibrary.wiley.wiley.com.wiley.com/doi/doi/doi/abs/10.11.1136/1136/vr.1136/vr.103406 11 11 https://www.tandfonline.com/doi/full/10.1080/03079457.2014.917760 12 https://wwwww.mdpi.com/2079-6382/5/5/5/5/5/893 13 https://www.semanticscholar.org/paper/association-betweew--antimicrobial-usage%2c-measures-raasch-postma/1 https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6631375/pmc6631375/#b91-pathogens-08-00050 2 https://rrr-asia.woah.orgg/wp-content https:/ https://www.galvmed.org/livestock-and-diseases/livestock-diseases/contagious-bovine-pleuropneumonia/4 https://wwwww.ncbi.ncbi.nlm.nlm.nih.gov/pmc/pmc/articles/pmc/articles/pmc6830973)5 https://www.frontiersin.org/articles/10.3389/fvets.2019.00452/full 6 https://pubmed.ncbi.nlm.nih.gov/27362766/ https://www.cambridge.org/core/books/challenges-to-tackling-antimicrobial-resistance/ role-of-vaccines-in-combating-antimicrobial-resistance/E1D9C2CB252F0BB79C2314E12E5E480B 9 https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2109.2010.02726.x 10 https://bvajournals.onlinelelibrary.wiley.wiley.com.wiley.com/doi/doi/doi/abs/10.11.1136/1136/vr.1136/vr.103406 11 11 https://www.tandfonline.com/doi/full/10.1080/03079457.2014.917760 12 https://wwwww.mdpi.com/2079-6382/5/5/5/5/5/893 13 https://www.semanticscholar.org/paper/association-betweew--antimicrobial-usage%2c-measures-raasch-postma/
摘要:核糖开关驻留在RNA的未翻译区域,并通过小分子的结合来调节与必需代谢物的生物合成有关的基因。自从本世纪初的发现以来,核糖开关被视为潜在的抗菌靶标。使用X射线晶体学指导的片段筛选,高通量筛选和有理配体设计,已经确定了针对各种核糖开关的铅化合物。在这里,我们回顾硫胺素焦磷酸盐(TPP),氟单核苷酸(FMN),GLMS,Guanine和其他核糖开关的当前状态和适用性,作为抗菌靶标,并在生物学环境中进行讨论。此外,我们重点介绍了核糖开关药物发现中的挑战,并强调开发核糖开关的特定高通量筛选方法的必要性。
经典的魔术子弹发现了抗生素的发现,这是由保罗·埃里希(Paul Ehrlich),塞尔曼·瓦克斯曼(Selman Waksman)和亚历山大·弗莱明(Alexander Fleming)等人格开创的,迎来了一个新的感染医学时代。在1900年,Paul Ehrlichfirfient描述了“魔术子弹”的概念,这种化学物质会损害病原体但不损害宿主。第一个成功的“魔术子弹”是砷胺,它彻底改变了梅毒的治疗[1]。1928年通过弗莱明(Fleming)在1928年通过链霉素和其他抗生素从土壤细菌中分离出链霉素和其他抗生素的偶然发现,1940年代预示了抗生素的黄金时代。从那时起,已经确定了大量抗菌物质并提供医疗用途[2]。青霉素会损害细菌细胞壁的合成,链霉素抑制核糖体功能。直到今天,这两个过程仍然是临床使用抗生素的最常见靶标。然而,还有许多其他已知的抗生素作用机理,可以将各种细菌细胞结构被用作抗生素靶标。这包括例如细胞膜,DNA,RNA或特定酶。了解抗菌活性的基础机制对于有效的药物开发至关重要,并且确定其分子靶标是将新药带入市场的先决条件。
1 埃及索哈杰大学药学院微生物学与免疫学系,2 埃及米尼亚大学药学院微生物学与免疫学系,3 埃及米尼亚德拉亚大学药学院微生物学与免疫学系,4 埃及埃尔法塔赫艾斯尤特大学医学院医学微生物学与免疫学系,5 黎巴嫩贝鲁特黎巴嫩美国大学吉尔伯特与罗斯玛丽查古里医学院,6 埃及索哈杰大学药学院药理学与毒理学系,7 沙特阿拉伯麦加乌姆古拉大学药学院药物化学系,8 沙特阿拉伯麦加乌姆古拉大学药学院药剂学系
摘要:抗生素在感染部位的生物利用度低是治疗失败和细菌耐药性增加的主要原因之一。因此,开发新的、非传统的抗生素输送策略来应对细菌病原体至关重要。在这里,我们研究了两种氟喹诺酮类药物环丙沙星和左氧氟沙星封装到聚合物基纳米载体(纳米抗生素)中,目的是提高它们在细菌感染部位的局部生物利用度。优化配方以实现最大药物负载。纳米抗生素的表面用抗葡萄球菌抗体作为配体分子进行修饰,以靶向金黄色葡萄球菌病原体。通过荧光共聚焦显微镜研究了纳米抗生素与细菌细胞的相互作用。常规测试(MIC 和 MBC)用于检查纳米抗生素制剂的抗菌性能。同时,还采用了生物发光分析模型,揭示了对胶体系统抗菌效力的快速有效评估。与游离型抗生素相比,靶向纳米抗生素对金黄色葡萄球菌的浮游生物和生物膜形式均表现出增强的抗菌活性。此外,我们的数据表明,靶向纳米抗生素治疗的疗效可能受其抗生素释放曲线的影响。
方法:这项研究是一项横断面观察性研究。这项研究于2024年1月至2024年在达卡乌塔拉的伊本·西纳诊断和咨询中心进行。16岁及以上的患者已包括在研究中。患有UTI或UTI症状的患者,例如排尿燃烧,频繁或强烈的尿液渴望,多云,黑暗或尿液的气味,发烧和发冷和脊椎疼痛的具有尿素培养的阳性。然而,尽管有症状,但在5天内接受了5天内接受抗生素或抗生素的患者。患者的尿液培养阳性症状包括上述症状,样本量为48。患者被鼓励提供清洁的中流尿液样本。计数菌落的数量以量化生物。gram阴性和革兰氏阳性细菌5的显着菌落计数≥105cfu/ml定义了UTI的诊断。通过使用细菌生长特征(形态)来鉴定培养基上的生长。收集数据的变量是:年龄,性别,微生物和抗生素灵敏度测试。
达卡大学药学学院,达卡1000号,孟加拉国B研究系植物生物学与生物技术系,洛约拉学院,伦巴卡卡姆,钦奈,泰米尔纳德邦,印度泰米尔纳德邦,印度印度哥伦比亚省BGC Trust University bgc University consectian c and Trocention bgc Trocention bgc Trocention c。 Izatnagar研究所,Bareilly,243122,印度北方邦E e Mawlana Bhashani科学与技术大学药学系,Santosh,Santosh,Tangail,1902年,孟加拉国,孟加拉国,牙科和实验性养育研究系,牙科,卫生学院牙科,卫生学院,szeged szeged Secret and arthh hungard sekeged Informance and Hungary Secret and Hungary Secret and Hungary Secrety and Hungary Secret and Hungary Secret and arther secred Grenhh Hungard secred and arther secred and。孟加拉国州立大学巴基斯坦H Peshawar,孟加拉国州立大学,达卡省萨特马吉路77号,达卡,孟加拉国1205,孟加拉国I天然产品系研究,Koirala生物技术研究所,生物技术研究所达卡大学药学学院,达卡1000号,孟加拉国B研究系植物生物学与生物技术系,洛约拉学院,伦巴卡卡姆,钦奈,泰米尔纳德邦,印度泰米尔纳德邦,印度印度哥伦比亚省BGC Trust University bgc University consectian c and Trocention bgc Trocention bgc Trocention c。 Izatnagar研究所,Bareilly,243122,印度北方邦E e Mawlana Bhashani科学与技术大学药学系,Santosh,Santosh,Tangail,1902年,孟加拉国,孟加拉国,牙科和实验性养育研究系,牙科,卫生学院牙科,卫生学院,szeged szeged Secret and arthh hungard sekeged Informance and Hungary Secret and Hungary Secret and Hungary Secrety and Hungary Secret and Hungary Secret and arther secred Grenhh Hungard secred and arther secred and。孟加拉国州立大学巴基斯坦H Peshawar,孟加拉国州立大学,达卡省萨特马吉路77号,达卡,孟加拉国1205,孟加拉国I天然产品系研究,Koirala生物技术研究所,生物技术研究所
抗菌剂,也称为化学疗法,旨在通过抑制或杀死感染微生物,同时最大程度地减少对宿主的伤害来对抗感染。抗生素是一种由微生物产生的一种抗生素,可有选择地抑制或杀死低浓度的其他微生物的生长或杀死其他微生物。该定义不包括较高生物体产生的物质。可以根据其化学结构,作用机理,靶向生物类型,活性谱和来源分类。某些抗菌作用直接在细菌细胞壁上发挥作用,或者必须通过它,然后才能在细胞内水平破坏细菌代谢。类红霉素这样的抗生素可以靶向革兰氏阳性细菌,但对革兰氏阴性菌的含量无效,除非在极少数情况下。大多数细菌基于实验室中使用的染色技术属于这两类。革兰氏阴性物种,即使用最少的营养迅速繁殖,并且在医院和革兰氏阳性对应物的同时也发现。革兰氏阳性生物的例子包括金黄色葡萄球菌,化脓性链球菌和肺炎链球菌,而革兰氏阴性菌的葡萄球菌包括大肠杆菌,Neisseria Gonorrhea和Klebsiella。厌氧菌可在没有游离氧气的情况下生存,但需要特殊的条件才能在实验室中生长。但是,在某些情况下,它们会引起严重的感染。使用抗菌药物的问题之一是毒性,在注射部位或影响各种器官的全身毒性上可能表现为局部刺激。一些常见的分类包括: *磺酰胺和相关药物 *奎诺酮,如环丙沙星 *β-乳糖抗生素,例如青霉素和头孢菌素 * tetracyclines * tetracyclines,包括强力霉素 *氨基糖苷,包括氨基糖苷,包括链霉菌素和雌雄同体,包括Er雌激素 * Macrolosiv,酸毛霉素,酸糖尿病,酸糖苷,酸糖苷,酸糖尿病红唑和氯咪唑抗生素也可以根据其作用机制进行分类: *抑制细胞壁合成,例如青霉素和头孢菌素 *抑制蛋白质合成,包括四环素和红霉素在内*也可以根据它们主要针对的生物类型来分类: *抗菌剂,包括青霉素和氨基糖苷 *抗真菌药物,例如抗菌剂 *抗真菌药物,例如ZIDOVUDINE和ACYCLOVIR抗菌抗菌剂,也可以根据其靶向: *抗菌剂进行分类。抗吡喹剂,例如氯喹和甲硝唑 *抗智能剂,例如甲苯二唑和丙ama剂,也可以根据其活性谱进行分类: *狭窄的 - 谱抗微生物剂,例如青霉素g和erythromycin and themimictram and themicramic and themicriame and themicriame andimicrials,themicriame themiccl themiccl tatect themiccl themicrials themiCrimicClateCcltic themiCrimicClateCclticramic tatect the最后,抗菌物质通过迅速杀死细菌或阻止其复制来起作用。氯霉素会导致骨髓抑郁症,而四环素可能会损害肝脏和肾脏。抗菌剂还会引发无法预测且不与剂量有关的超敏反应。这些反应从轻度皮疹到严重的过敏性休克。它们可能是由青霉素,头孢菌素,磺酰胺或氟喹诺酮引起的。另一个主要问题是耐药性,随着时间的流逝,微生物对抗菌药物产生无反应性。这可能是由于某些微生物中的自然耐药性或由于这些药物长时间使用而获得的耐药性。超级感染是指抗菌治疗后新感染的发展。是因为人体的正常微生物菌群发生了改变,导致失衡会导致致病生物更容易确定自己。的例子包括念珠菌过度生长,这通常与四环素和氯霉素等广谱抗生素有关。为了最大程度地减少超级感染,尽可能使用特定的抗菌药物至关重要,避免使用这些药物治疗微不足道的感染,而不是不必要地延长抗菌治疗。使用抗菌剂会导致各种问题,例如肠道菌群被破坏时的维生素缺乏。这种破坏可能是由于某些改变肠道平衡的药物的使用可能会导致这种中断。此外,抗菌药物可以掩盖感染,暂时抑制症状,但可能导致后来更严重的结果。例如,将单剂量的青霉素用于淋病,可能会掩盖梅毒或TB,这是由于短期链霉素引起的。磺酰胺是一类较旧的抗菌剂,由于细菌耐药性和不良副作用的发展而被大大替换。这些化合物主要用作抑制抑制剂,抑制各种细菌的生长,包括革兰氏阳性和革兰氏阴性生物。其作用背后的机制涉及细菌干扰叶酸的合成,而人类可以从饮食中利用预先形成的叶酸。磺酰胺以不同的形式可用,每种都具有其独特的特征。可以根据其作用方式将它们广泛分为三个主要组:(1)抑制细胞壁合成,包括甲基核苷和奥沙西林等青霉素; (2)抑制蛋白质合成; (3)抑制细菌核酸合成。
卫生部长致辞 ................................................................................ i 致谢 ................................................................................................ ii 编辑团队 ................................................................................................ iv 首字母缩略词和缩写 .............................................................................. v 国家抗生素指南介绍 ...................................................................... viii 血源性感染和其他全身性综合症 ............................................................ 1 小儿骨与关节感染 ...................................................................................... 19 成人骨与关节感染 ...................................................................................... 26 心血管感染 ............................................................................................. 33 中枢神经系统感染 ............................................................................................. 47 牙齿和口腔感染…………………....………………...................... 55 胃肠道感染 …………………………………...................... 61 眼部感染 ……………………………………………………………........................ 74 上呼吸道感染 …………………………….…………………........................ 86 下呼吸道感染 …………………………………….…………........................ 105 小儿皮肤和软组织感染 …………………….................................. 124 成人皮肤和软组织感染 …………………………................................ 150 泌尿道感染 …………………………………….……………........................ 170 公共卫生计划 丝虫病 …………………………………………………………………………..…… 183麻风病……………………………………………………………………………….. 184 疟疾……………………………………………………………………………….. 186 血吸虫病…………………………………………………………………….….… 195 性传播感染………………………………………………………… 196 结核病……………………………………………………………………… 219 手术预防……………………………………………………………….……………........................ 230
