摘要全球糖尿病和疟疾的负担需要对药物开发的创新方法,而植物来源的化合物则作为有前途的候选者。本综述研究了基于植物性的生物活性化合物对开发抗糖尿病和抗疟疾疗法的潜力。这些化合物的作用机制,包括它们调节葡萄糖代谢和战斗疟疾寄生虫的能力。关键问题,例如生物多样性损失,有限的资金和监管障碍,强调了跨学科研究和协作的需求。未来的方向包括将传统医学与现代药理结合,增强生物技术方法以及建立可持续的药物开发管道。这些努力强调了植物来源化合物在应对全球健康挑战方面的变革潜力。关键词:植物来源的化合物,抗糖尿病药,抗疟药,生物活性化合物,药物发现。
由于耐药性的出现,抗疟药物的疗效正在下降。据报道,所有可用的抗疟药物,包括青蒿素,都出现了耐药性,因此对替代药物候选物的需求一直存在。传统的药物发现方法是对大型化合物库进行高通量筛选 (HTS) 以识别新药线索,这种方法耗时且资源密集。虽然虚拟计算机筛选是解决这个问题的一种方法,但模型的泛化并不理想。人工智能 (AI) 利用基于结构或基于配体的方法,在化学性质预测领域表现出高度准确的性能。利用现有数据,AI 将成为盲目搜索 HTS 或基于指纹的虚拟筛选的合适替代方案。AI 模型将学习数据中的模式并帮助有效地搜索命中化合物。在这项工作中,我们引入了 DeepMalaria,这是一种基于深度学习的过程,能够使用化合物的 SMILES 预测其抗恶性疟原虫抑制特性。基于图形的模型在葛兰素史克 (GSK) 数据集中的 13,446 种公开可用的抗疟原虫命中化合物上进行训练,这些化合物目前正用于寻找治疗疟疾的新型候选药物。我们通过预测大环化合物库中的命中化合物和已批准用于重新利用的药物来验证该模型。我们选择了大环化合物,因为这些配体结合结构在疟疾药物发现中尚未得到充分探索。该过程的计算机模拟流程还包括对内部独立数据集的额外验证,该数据集主要由天然产物化合物组成。利用从大型数据集进行的迁移学习来提高深度学习模型的性能。为了验证 DeepMalaria 生成的匹配结果,我们使用了常用的基于 SYBR Green I 荧光测定的表型筛选。DeepMalaria 能够检测到所有具有纳摩尔活性的化合物和 87.5% 的抑制率超过 50% 的化合物。进一步的实验揭示了这些化合物的作用机制,结果表明,其中一种热门化合物 DC-9237 不仅能抑制恶性疟原虫的所有有性阶段,而且是一种速效化合物,这使其成为进一步优化的有力候选者。
抗疟疾耐药性是打击全球疟疾传播的迫切问题。在一项新的研究中,费城儿童医院(CHOP)的研究人员发现了一个关键过程,其中疟疾寄生虫占据了人类血细胞酶,这可以为抗疟疾治疗提供新的方法。这些发现发表在《美国国家科学院》杂志上,提供了有关如何设计药物的新见解,这些药物更有效地治疗受这种毁灭性传染病影响的患者。
Gallo等人,2018年:直接的早期基因,记忆和精神疾病:专注于C-Fos,Egr1和Arc。PMID:29755331 Glover and Harrison,1995:异二聚体BZIP转录因子C-FOS-C-JUN与DNA结合的晶体结构。PMID:7816143 Herrera和Robertson,1996:大脑中C-Fos的激活。PMID:8971979 Mayer and Bendayan,2001年:细胞和组织中稀有分子免疫定位的扩增方法。PMID:11194866 Morgan等,1987:癫痫发作后中枢神经系统中C-FOS表达的映射模式。PMID:3037702 Sheng and Greenberg,1990:神经系统中C-FOS和其他直接早期基因的调节和功能。PMID:1969743
摘要:疟原虫对所有现有抗疟药物的耐药性不断加剧,这要求我们开发更好的治疗化合物和适当的靶向给药策略。将抗疟药物装载在专门针对寄生虫的纳米载体中,将有助于降低总剂量,减少对患者的副作用,并向寄生细胞提供更高的局部剂量,从而提高对病原体的杀伤力。本文,我们报告了具有抗疟负载能力的树枝化超支化聚合物 (DHP) 的开发情况,这些聚合物涂有肝素,可特异性地靶向被恶性疟原虫寄生的红细胞。所得的 DHP-肝素复合物具有肝素固有的抗疟活性,IC50 约为 400 nM,此外还特异性地靶向恶性疟原虫感染的红细胞(相对于未感染的红细胞)。 DHP − 肝素纳米载体对迄今为止描述的有限结构家族具有潜在的重要贡献,可用于装载和靶向递送当前和未来的抗疟化合物。关键词:树枝状聚合物、靶向药物递送、疟疾、纳米载体、肝素
在准备使用R21/MATRIX-M™的大规模疫苗接种时,结合了二氢二氨酸蛋白酶,Piperaquine和单个低剂量底喹的大规模施用,我们评估了这种组合的耐受性,安全性和潜在相互作用,从而影响免疫性或药物动力学。120个健康的泰国志愿者被随机分配,以接收抗疟疾与疫苗接种(n = 50),单独接种疫苗(n = 50)或仅抗疟药(n = 20)。相隔一个月的三轮疫苗和抗疟疾。该疫苗单独耐受良好,并与抗疟药结合使用。没有参与者未能完成3剂疫苗课程。在疫苗免疫原性或单独或组合给出的管道喹的药代动力学中没有显着差异。这项研究支持针对R21/MATRIX-M™进行大规模疫苗接种的大规模试验,并在孟加拉国结合了质量抗疟药。
摘要:需要采用新型作用方式的新药来保护疟疾治疗。近年来,已经测试了数百万种化合物的能力,以抑制无性血液阶段恶性疟原虫寄生虫的生长,从而鉴定出数千种具有抗血流活性的化合物。确定抗白潮化合物的作用机制可以为它们的进一步发展提供了依据,但仍然具有挑战性。相对较高的化合物比例被确定为杀死无性血液阶段的寄生虫,这表明靶向寄生虫的质膜Na + -truding,H + - 进口泵,PFATP4。PFATP4的抑制剂会导致寄生虫的内部[Na +]和pH的特征变化。 在这里,我们设计了一种“ pH指纹”测定法,该测定法可以鲁side pFATP4抑制剂,同时允许检测乳酸抑制剂(和区分)乳酸抑制剂:H +转运蛋白PFFNT,PFFNT,这是验证的抗微药物靶标,以及V型h + h + aTPase的cansy 7,这是一个可能的cansy and and and and typ as and and and and sys。 在我们的pH指纹测定和随后的次要测定中,ZY19489没有显示出V型H + ATPase抑制pH调节的证据,这表明它在寄生虫中具有不同的作用方式。 pH指纹测定也有潜力鉴定蛋白团,酸加载Cl-转运蛋白(S)的抑制剂(对于分子识别(IES)仍然流行),并通过抑制葡萄糖转运蛋白转运蛋白PFHT PFHT或糖溶解作用而起作用。PFATP4的抑制剂会导致寄生虫的内部[Na +]和pH的特征变化。在这里,我们设计了一种“ pH指纹”测定法,该测定法可以鲁side pFATP4抑制剂,同时允许检测乳酸抑制剂(和区分)乳酸抑制剂:H +转运蛋白PFFNT,PFFNT,这是验证的抗微药物靶标,以及V型h + h + aTPase的cansy 7,这是一个可能的cansy and and and and typ as and and and and sys。在我们的pH指纹测定和随后的次要测定中,ZY19489没有显示出V型H + ATPase抑制pH调节的证据,这表明它在寄生虫中具有不同的作用方式。pH指纹测定也有潜力鉴定蛋白团,酸加载Cl-转运蛋白(S)的抑制剂(对于分子识别(IES)仍然流行),并通过抑制葡萄糖转运蛋白转运蛋白PFHT PFHT或糖溶解作用而起作用。因此,pH指纹测定提供了一个有效的起点,使一定比例的抗白质化合物与其作用机理相匹配。关键词:疟疾,恶性疟原虫,药物靶标,pH调节,离子稳态